메뉴 건너뛰기




Volumn 21, Issue SUPPL.2, 2013, Pages 87-98

Diesel engine modelling using extreme learning machine under scarce and exponential data sets

Author keywords

Data processing; Diesel engine modeling; Engine performance prediction; Extreme learning machine; Least squares support vector machine; Relevance vector machine

Indexed keywords

DATA HANDLING; FORECASTING; KNOWLEDGE ACQUISITION; METADATA; RADIAL BASIS FUNCTION NETWORKS; STRUCTURAL OPTIMIZATION; SUPPORT VECTOR MACHINES; VECTORS;

EID: 84887389827     PISSN: 02184885     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218488513400187     Document Type: Article
Times cited : (6)

References (49)
  • 1
    • 0028240040 scopus 로고
    • Acute respiratory effects of particulate air pollution
    • D. W. Dockery and C. A. Pope III, Acute respiratory effects of particulate air pollution, Annu. Rev. of Publ. Health 15 (1994) 107-132.
    • (1994) Annu. Rev. of Publ. Health , vol.15 , pp. 107-132
    • Dockery, D.W.1    Pope III, C.A.2
  • 2
    • 0032446632 scopus 로고    scopus 로고
    • Climate forcing by carbonaceous and sulfate aerosols
    • J. E. Penner, C. C. Chuang and K. Grant, Climate forcing by carbonaceous and sulfate aerosols, Clim. Dynam. 14 (1998) 839-851.
    • (1998) Clim. Dynam. , vol.14 , pp. 839-851
    • Penner, J.E.1    Chuang, C.C.2    Grant, K.3
  • 3
    • 0035825677 scopus 로고    scopus 로고
    • Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols
    • M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409 (2001) 695-697.
    • (2001) Nature , vol.409 , pp. 695-697
    • Jacobson, M.Z.1
  • 4
    • 73249146629 scopus 로고    scopus 로고
    • Engine idle-speed system modelling and control optimization using artificial intelligence
    • P. K. Wong, L. M. Tam, K. Li and C. M. Vong, Engine idle-speed system modelling and control optimization using artificial intelligence, P. I. Mech. Eng. D-J. Aut. 224 (2010) 55-72.
    • (2010) P. I. Mech. Eng. D-J. Aut. , vol.224 , pp. 55-72
    • Wong, P.K.1    Tam, L.M.2    Li, K.3    Vong, C.M.4
  • 6
    • 0029521120 scopus 로고
    • Development and testing of diesel engine CFD models
    • R. D. Reitz and C. J. Rutland, Development and testing of diesel engine CFD models, Prog. Energ Combust. 21 (1995) 173-196.
    • (1995) Prog. Energ Combust. , vol.21 , pp. 173-196
    • Reitz, R.D.1    Rutland, C.J.2
  • 7
    • 39749114440 scopus 로고    scopus 로고
    • Multi-zone modeling of combustion and emissions formation in di diesel engine operating on ethanoldiesel fuel blends
    • C. D. Rakopoulos, K. A. Antonopoulos, D. C. Rakopoulos and D. T. Hountalas, Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanoldiesel fuel blends, Energ. Convers. Manage. 49 (2008) 625-643.
    • (2008) Energ. Convers. Manage. , vol.49 , pp. 625-643
    • Rakopoulos, C.D.1    Antonopoulos, K.A.2    Rakopoulos, D.C.3    Hountalas, D.T.4
  • 9
    • 0032593633 scopus 로고    scopus 로고
    • Learning optimization in simplifying fuzzy rules
    • X. Wang and J. Hong, Learning optimization in simplifying fuzzy rules, Fuzzy Set. Syst. 106 (1999) 349-356.
    • (1999) Fuzzy Set. Syst. , vol.106 , pp. 349-356
    • Wang, X.1    Hong, J.2
  • 10
    • 0034294201 scopus 로고    scopus 로고
    • Improving learning accuracy of fuzzy decision trees by hybrid neural networks
    • E. C. C. Tsang, X. Z. Wang and D. S. Yeung, Improving learning accuracy of fuzzy decision trees by hybrid neural networks, IEEE Trans. Fuzzy Syst. 8 (2000) 601-614.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , pp. 601-614
    • Tsang, E.C.C.1    Wang, X.Z.2    Yeung, D.S.3
  • 11
    • 0035329839 scopus 로고    scopus 로고
    • Transferring case knowledge to adaptation knowledge: An approach for case-base maintenance
    • S. C. K. Shiu, D. S. Yeung, C. H. Sun and X. Z. Wang, Transferring case knowledge to adaptation knowledge: An approach for case-base maintenance, Comput. Intell. 17 (2001) 295-314.
    • (2001) Comput. Intell. , vol.17 , pp. 295-314
    • Shiu, S.C.K.1    Yeung, D.S.2    Sun, C.H.3    Wang, X.Z.4
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995) 273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • M. E. Tipping, Sparse bayesian learning and the relevance vector machine, J. Mach. Learn. Res. 1 (2001) 211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 16
    • 0035501962 scopus 로고    scopus 로고
    • A new approach to fuzzy rule generation: Fuzzy extension matrix
    • X. Z. Wang, Y. D. Wang, X. F. Xu, W. D. Ling and D. S. Yeung, A new approach to fuzzy rule generation: Fuzzy extension matrix, Fuzzy Set. Syst. 123 (2001) 291-306.
    • (2001) Fuzzy Set. Syst. , vol.123 , pp. 291-306
    • Wang, X.Z.1    Wang, Y.D.2    Xu, X.F.3    Ling, W.D.4    Yeung, D.S.5
  • 17
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G. B. Huang, Q. Y. Zhu and C. K. Siew, Extreme learning machine: Theory and applications, Neurocomputing 70 (2006) 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 20
    • 78651467913 scopus 로고    scopus 로고
    • Prediction of diesel engine performance using biofuels with artificial neural network
    • H. Oguz, I. Saritas and H. E. Baydan, Prediction of diesel engine performance using biofuels with artificial neural network, Expert Syst. Appl. 37 (2010) 6579-6586.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 6579-6586
    • Oguz, H.1    Saritas, I.2    Baydan, H.E.3
  • 21
    • 79961026747 scopus 로고    scopus 로고
    • Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches
    • T. F. Yusaf, B. F. Yousif and M. M. Elawad, Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches, Energy 36 (2011) 4871-4878.
    • (2011) Energy , vol.36 , pp. 4871-4878
    • Yusaf, T.F.1    Yousif, B.F.2    Elawad, M.M.3
  • 22
    • 84855272041 scopus 로고    scopus 로고
    • Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends
    • H. M. Ismail, H. K. Ng, C. W. Queck and S. Gan, Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends, Appl. Energ. 92 (2012) 769-777.
    • (2012) Appl. Energ. , vol.92 , pp. 769-777
    • Ismail, H.M.1    Ng, H.K.2    Queck, C.W.3    Gan, S.4
  • 23
    • 0035100447 scopus 로고    scopus 로고
    • Improving neural network training solutions using regularisation
    • S. Mc Loone and G. Irwin, Improving neural network training solutions using regularisation, Neurocomputing 37 (2001) 71-90.
    • (2001) Neurocomputing , vol.37 , pp. 71-90
    • Mc Loone, S.1    Irwin, G.2
  • 24
    • 48749124544 scopus 로고    scopus 로고
    • The application of artificial neural networks with small data sets: An example for analysis of fracture spacing in the Lisburne Formation, northeastern Alaska
    • D. Kaviani, T. D. Bui, J. L. Jensen and C. L. Hanks, The application of artificial neural networks with small data sets: An example for analysis of fracture spacing in the Lisburne Formation, northeastern Alaska, SPE Reserv. Eval. Eng. 11 (2008) 598-605.
    • (2008) SPE Reserv. Eval. Eng. , vol.11 , pp. 598-605
    • Kaviani, D.1    Bui, T.D.2    Jensen, J.L.3    Hanks, C.L.4
  • 25
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • M. Pal and P. M. Mather, Support vector machines for classification in remote sensing, Int. J. Remote Sens. 26 (2005) 1007-1011.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 1007-1011
    • Pal, M.1    Mather, P.M.2
  • 26
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • Y. H. Pao, G. H. Park and D. J. Sobajic, Learning and generalization characteristics of the random vector functional-link net, Neurocomputing 6 (1994) 163-180.
    • (1994) Neurocomputing , vol.6 , pp. 163-180
    • Pao, Y.H.1    Park, G.H.2    Sobajic, D.J.3
  • 27
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive function approximation and the functional-link net
    • B. Igelnik and Y. H. Pao, Stochastic choice of basis functions in adaptive function approximation and the functional-link net, IEEE Trans. Neural Netw. 6 (1995) 1320-1329.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.H.2
  • 29
    • 49649084441 scopus 로고    scopus 로고
    • Comments on "the Extreme Learning Machine"
    • L. P. Wang and C. R. Wan, Comments on "The Extreme Learning Machine", IEEE Trans. Neural Netw. 19 (2008) 1494-1495.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , pp. 1494-1495
    • Wang, L.P.1    Wan, C.R.2
  • 30
    • 49649105493 scopus 로고    scopus 로고
    • Reply to Comments on "the Extreme Learning Machine"
    • G. B. Huang, Reply to Comments on "The Extreme Learning Machine", IEEE Trans. Neural Netw. 19 (2008) 1495-1496.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , pp. 1495-1496
    • Huang, G.B.1
  • 32
    • 80051669013 scopus 로고    scopus 로고
    • A study on effectiveness of extreme learning machine
    • Y. Wang, F. Cao and Y. Yuan, A study on effectiveness of extreme learning machine, Neurocomputing 74 (2011) 2483-2490.
    • (2011) Neurocomputing , vol.74 , pp. 2483-2490
    • Wang, Y.1    Cao, F.2    Yuan, Y.3
  • 33
    • 84870252621 scopus 로고    scopus 로고
    • Image classification based on effective extreme learning machine
    • F. Cao, B. Liu and D. Sun Park, Image classification based on effective extreme learning machine, Neurocomputing 102 (2013) 90-97.
    • (2013) Neurocomputing , vol.102 , pp. 90-97
    • Cao, F.1    Liu, B.2    Sun Park, D.3
  • 34
    • 49249135950 scopus 로고    scopus 로고
    • Power utility nontechnical loss analysis with extreme learning machine method
    • A. H. Nizar, Z. Y. Dong and Y. Wang, Power utility nontechnical loss analysis with extreme learning machine method, IEEE Trans. Power Syst. 23 (2008) 946-955.
    • (2008) IEEE Trans. Power Syst. , vol.23 , pp. 946-955
    • Nizar, A.H.1    Dong, Z.Y.2    Wang, Y.3
  • 35
    • 79951521183 scopus 로고    scopus 로고
    • Real-time transient stability assessment model using extreme learning machine
    • Y. Xu, Z. Y. Dong, K. Meng, R. Zhang and K. P. Wong, Real-time transient stability assessment model using extreme learning machine, IET Gener Transm Dis 5 (2011) 314-322.
    • (2011) IET Gener Transm Dis , vol.5 , pp. 314-322
    • Xu, Y.1    Dong, Z.Y.2    Meng, K.3    Zhang, R.4    Wong, K.P.5
  • 36
    • 84870254661 scopus 로고    scopus 로고
    • Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system
    • S. Wu, Y. Wang and S. Cheng, Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system, Neurocomputing, 102 (2013) 163-175.
    • (2013) Neurocomputing , vol.102 , pp. 163-175
    • Wu, S.1    Wang, Y.2    Cheng, S.3
  • 37
    • 12444339765 scopus 로고    scopus 로고
    • Modelling of modern automotive petrol engine performance using support vector machines
    • C. M. Vong, P. K. Wong, Y. P. Li and C. M. Ho, Modelling of modern automotive petrol engine performance using support vector machines, J. Zhejiang Univ. Sci. A 6 (2005) 1-8.
    • (2005) J. Zhejiang Univ. Sci. A , vol.6 , pp. 1-8
    • Vong, C.M.1    Wong, P.K.2    Li, Y.P.3    Ho, C.M.4
  • 38
    • 31744447275 scopus 로고    scopus 로고
    • Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference
    • C. M. Vong, P. K. Wong and Y. P. Li, Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference, Eng. Appl. Artif. Intel. 19 (2006) 277-287.
    • (2006) Eng. Appl. Artif. Intel. , vol.19 , pp. 277-287
    • Vong, C.M.1    Wong, P.K.2    Li, Y.P.3
  • 39
    • 34548698657 scopus 로고    scopus 로고
    • Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process
    • J. Yuan, K. Wang, T. Yu and M. Fang, Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process, Eng. Appl. Artif. Intel. 20 (2007) 970-979.
    • (2007) Eng. Appl. Artif. Intel. , vol.20 , pp. 970-979
    • Yuan, J.1    Wang, K.2    Yu, T.3    Fang, M.4
  • 40
    • 77949658813 scopus 로고    scopus 로고
    • Application of relevance vector machine and logistic regression for machine degradation assessment
    • W. Caesarendra, A. Widodo and B. S. Yang, Application of relevance vector machine and logistic regression for machine degradation assessment, Mech. Syst. Signal Pr. 24 (2010) 1161-1171.
    • (2010) Mech. Syst. Signal Pr. , vol.24 , pp. 1161-1171
    • Caesarendra, W.1    Widodo, A.2    Yang, B.S.3
  • 41
    • 84856452836 scopus 로고    scopus 로고
    • Automotive engine power performance tuning under numerical and nominal data
    • P. K. Wong, L. M. Tam and L. Ke, Automotive engine power performance tuning under numerical and nominal data, Control Eng. Pract. 20 (2012) 300-314.
    • (2012) Control Eng. Pract. , vol.20 , pp. 300-314
    • Wong, P.K.1    Tam, L.M.2    Ke, L.3
  • 42
    • 80455150418 scopus 로고    scopus 로고
    • Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine
    • P. K. Wong, Q. Xu, C. M. Vong and H. C. Wong, Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine, IEEE Trans. Ind. Electron. 59 (2012) 1988-2001.
    • (2012) IEEE Trans. Ind. Electron. , vol.59 , pp. 1988-2001
    • Wong, P.K.1    Xu, Q.2    Vong, C.M.3    Wong, H.C.4
  • 43
    • 84878630549 scopus 로고    scopus 로고
    • Modeling and optimization of biodiesel engine performance using advanced machine learning methods
    • K. I. Wong, P. K. Wong, C. S. Cheung and C. M. Vong, Modeling and optimization of biodiesel engine performance using advanced machine learning methods, Energy 55 (2013) 519-528.
    • (2013) Energy , vol.55 , pp. 519-528
    • Wong, K.I.1    Wong, P.K.2    Cheung, C.S.3    Vong, C.M.4
  • 44
    • 71849118548 scopus 로고    scopus 로고
    • Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol
    • L. Zhu, C. S. Cheung, W. G. Zhang and Z. Huang, Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol, Sci Total Environ. 408 (2010) 914-921.
    • (2010) Sci Total Environ. , vol.408 , pp. 914-921
    • Zhu, L.1    Cheung, C.S.2    Zhang, W.G.3    Huang, Z.4
  • 45
    • 79952532837 scopus 로고    scopus 로고
    • Combustion performance and emission characteristics of a di diesel engine fueled with ethanol-biodiesel blends
    • L. Zhu, C. S. Cheung, W. G. Zhang and Z. Huang, Combustion, performance and emission characteristics of a DI diesel engine fueled with ethanol-biodiesel blends, Fuel 90 (2011) 1743-1750.
    • (2011) Fuel , vol.90 , pp. 1743-1750
    • Zhu, L.1    Cheung, C.S.2    Zhang, W.G.3    Huang, Z.4
  • 46
    • 12444291490 scopus 로고    scopus 로고
    • Gaussian processes for machine learning
    • M. Seeger, Gaussian processes for machine learning, Int. J. Neural Syst. 14 (2004) 69-106.
    • (2004) Int. J. Neural Syst. , vol.14 , pp. 69-106
    • Seeger, M.1
  • 48
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Disc. 2 (1998) 121-167.
    • (1998) Data Min. Knowl. Disc. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 49
    • 82355175771 scopus 로고    scopus 로고
    • Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks
    • E. Romero and R. Alquézar, Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks, Neural Networks 25 (2012) 122-129.
    • (2012) Neural Networks , vol.25 , pp. 122-129
    • Romero, E.1    Alquézar, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.