메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2627-2633

Complex event detection via multi-source video attributes

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX EVENT DETECTION; CORRELATION VECTORS; DYNAMIC PROPERTY; EVENT DETECTION; EVENT DETECTORS; LARGE-SCALE DATASET; SEMANTIC LABELS; VISUAL ATTRIBUTES;

EID: 84887365125     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.339     Document Type: Conference Paper
Times cited : (58)

References (23)
  • 1
    • 84887326942 scopus 로고    scopus 로고
    • http://en. wikipedia. org/wiki/sylvester equation.
  • 2
    • 84887354463 scopus 로고    scopus 로고
    • http://www. nist. gov/itl/iad/mig/upload/med11-evalplanv03-20110801a. pdf.
  • 3
    • 84887331078 scopus 로고    scopus 로고
    • http://www. nist. gov/itl/iad/mig/upload/med12-evalplanv01. pdf.
  • 4
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817-1853, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 5
    • 80052879599 scopus 로고    scopus 로고
    • High level describable attributes for predicting aesthetics and interestingness
    • S. Dhar, V. Ordonez, and T. L. Berg. High level describable attributes for predicting aesthetics and interestingness. In CVPR, pages 1657-1664, 2011.
    • (2011) CVPR , pp. 1657-1664
    • Dhar, S.1    Ordonez, V.2    Berg, T.L.3
  • 7
    • 84866719272 scopus 로고    scopus 로고
    • Discovering localized attributes for fine-grained recognition
    • K. Duan, D. Parikh, D. J. Crandall, and K. Grauman. Discovering localized attributes for fine-grained recognition. In CVPR, pages 3474-3481, 2012.
    • (2012) CVPR , pp. 3474-3481
    • Duan, K.1    Parikh, D.2    Crandall, D.J.3    Grauman, K.4
  • 8
    • 70450207704 scopus 로고    scopus 로고
    • Describing objects by their attributes
    • A. Farhadi, I. Endres, D. Hoiem, and D. A. Forsyth. Describing objects by their attributes. In CVPR, pages 1778-1785, 2009.
    • (2009) CVPR , pp. 1778-1785
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3    Forsyth, D.A.4
  • 9
    • 80052908079 scopus 로고    scopus 로고
    • Sharing features between objects and their attributes
    • S. J. Hwang, F. Sha, and K. Grauman. Sharing features between objects and their attributes. In CVPR, pages 1761-1768, 2011.
    • (2011) CVPR , pp. 1761-1768
    • Hwang, S.J.1    Sha, F.2    Grauman, K.3
  • 10
    • 84867889550 scopus 로고    scopus 로고
    • Recognizing complex events using largemargin joint low-level event model
    • H. Izadinia and M. Shah. Recognizing complex events using largemargin joint low-level event model. In ECCV (4), pages 430-444, 2012.
    • (2012) ECCV , Issue.4 , pp. 430-444
    • Izadinia, H.1    Shah, M.2
  • 11
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, pages 951-958, 2009.
    • (2009) CVPR , pp. 951-958
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 12
    • 0344551869 scopus 로고    scopus 로고
    • Space-time interest points
    • I. Laptev and T. Lindeberg. Space-time interest points. In ICCV, pages 432-439, 2003.
    • (2003) ICCV , pp. 432-439
    • Laptev, I.1    Lindeberg, T.2
  • 13
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 14
    • 84856679717 scopus 로고    scopus 로고
    • Multiclass transfer learning from unconstrained priors
    • J. Luo, T. Tommasi, and B. Caputo. Multiclass transfer learning from unconstrained priors. In ICCV, pages 1863-1870, 2011.
    • (2011) ICCV , pp. 1863-1870
    • Luo, J.1    Tommasi, T.2    Caputo, B.3
  • 15
    • 84871363788 scopus 로고    scopus 로고
    • Knowledge adaptation for ad hoc multimedia event detection with few exemplars
    • Z. Ma, Y. Yang, Y. Cai, N. Sebe, and A. G. Hauptmann. Knowledge adaptation for ad hoc multimedia event detection with few exemplars. In ACM Multimedia, pages 469-478, 2012.
    • (2012) ACM Multimedia , pp. 469-478
    • Ma, Z.1    Yang, Y.2    Cai, Y.3    Sebe, N.4    Hauptmann, A.G.5
  • 18
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 19
    • 78149355981 scopus 로고    scopus 로고
    • Efficient object category recognition using classemes
    • L. Torresani, M. Szummer, and A. W. Fitzgibbon. Efficient object category recognition using classemes. In ECCV (1), pages 776-789, 2010.
    • (2010) ECCV , Issue.1 , pp. 776-789
    • Torresani, L.1    Szummer, M.2    Fitzgibbon, A.W.3
  • 20
    • 77953177673 scopus 로고    scopus 로고
    • Joint learning of visual attributes, object classes and visual saliency
    • G. Wang and D. A. Forsyth. Joint learning of visual attributes, object classes and visual saliency. In ICCV, pages 537-544, 2009.
    • (2009) ICCV , pp. 537-544
    • Wang, G.1    Forsyth, D.A.2
  • 21
    • 78149314622 scopus 로고    scopus 로고
    • A discriminative latent model of object classes and attributes
    • Y. Wang and G. Mori. A discriminative latent model of object classes and attributes. In ECCV (5), pages 155-168, 2010.
    • (2010) ECCV , Issue.5 , pp. 155-168
    • Wang, Y.1    Mori, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.