메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1657-1664

High level describable attributes for predicting aesthetics and interestingness

Author keywords

[No Author keywords available]

Indexed keywords

ESTIMATION; PATTERN RECOGNITION;

EID: 80052879599     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2011.5995467     Document Type: Conference Paper
Times cited : (451)

References (26)
  • 1
    • 36349017330 scopus 로고    scopus 로고
    • Towards a psychology of photography: Dimensions underlying aesthetic appeal of photographs
    • 1659
    • O. Axelsson. Towards a psychology of photography: dimensions underlying aesthetic appeal of photographs. In Perceptual and Motor Skills, 2007. 1659
    • (2007) Perceptual and Motor Skills
    • Axelsson, O.1
  • 2
    • 33845595951 scopus 로고    scopus 로고
    • Animals on the web
    • 1661
    • T. L. Berg and D. A. Forsyth. Animals on the web. In CVPR, 2006. 1661
    • (2006) CVPR
    • Berg, T.L.1    Forsyth, D.A.2
  • 3
    • 37849022306 scopus 로고    scopus 로고
    • Studying aesthetics in photographic images using a computational approach
    • 1658, 1660
    • R. Datta, D. Joshi, J. Li, and J. Z. Wang. Studying aesthetics in photographic images using a computational approach. In ECCV, 2006. 1658, 1660
    • (2006) ECCV
    • Datta, R.1    Joshi, D.2    Li, J.3    Wang, J.Z.4
  • 4
    • 69949167278 scopus 로고    scopus 로고
    • Algorithmic inferencing of aesthetics and emotion in natural images: An exposition
    • 1658
    • R. Datta, J. Li, and J. Z. Wang. Algorithmic inferencing of aesthetics and emotion in natural images: An exposition. In ICIP, 2008. 1658
    • (2008) ICIP
    • Datta, R.1    Li, J.2    Wang, J.Z.3
  • 6
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • 1661
    • L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. In CVPR, 2005. 1661
    • (2005) CVPR
    • Fei-Fei, L.1    Perona, P.2
  • 7
    • 70450219358 scopus 로고    scopus 로고
    • Learning visual attributes
    • 1658
    • V. Ferrari and A. Zisserman. Learning visual attributes. NIPS, 2007. 1658
    • (2007) NIPS
    • Ferrari, V.1    Zisserman, A.2
  • 8
    • 80052885466 scopus 로고    scopus 로고
    • Exploring aesthetic principles of spatial composition through stock photography
    • 1659
    • J. Gardner, C. Nothelfer, and S. Palmer. Exploring aesthetic principles of spatial composition through stock photography. In VSS, 2008. 1659
    • (2008) VSS
    • Gardner, J.1    Nothelfer, C.2    Palmer, S.3
  • 9
    • 33745947933 scopus 로고    scopus 로고
    • Geometric context from a single image
    • 1661
    • D. Hoiem, A. A. Efros, and M. Hebert. Geometric context from a single image. In ICCV, pages 654-661, 2005. 1661
    • (2005) ICCV , pp. 654-661
    • Hoiem, D.1    Efros, A.A.2    Hebert, M.3
  • 10
    • 0035286497 scopus 로고    scopus 로고
    • Computational modelling of visual attention
    • Mar, 1659
    • L. Itti and C. Koch. Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3):194-203, Mar. 2001. 1659
    • (2001) Nature Reviews Neuroscience , vol.2 , Issue.3 , pp. 194-203
    • Itti, L.1    Koch, C.2
  • 11
    • 33845591650 scopus 로고    scopus 로고
    • The design of high-level features for photo quality assessment
    • 1658, 1661, 1662
    • Y. Ke, X. Tang, and F. Jing. The design of high-level features for photo quality assessment. In CVPR, 2006. 1658, 1661, 1662
    • (2006) CVPR
    • Ke, Y.1    Tang, X.2    Jing, F.3
  • 12
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • 1657, 1658
    • N. Kumar, A. Berg, P. Belhumeur, and S. Nayar. Attribute and simile classifiers for face verification. In ICCV, 2009. 1657, 1658
    • (2009) ICCV
    • Kumar, N.1    Berg, A.2    Belhumeur, P.3    Nayar, S.4
  • 13
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • 1658
    • C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009. 1658
    • (2009) CVPR
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 14
    • 38149062545 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching
    • June, 1660
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching. In CVPR, June 2006. 1660
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 15
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale invariant keypoints
    • 1660
    • D. G. Lowe. Distinctive image features from scale invariant keypoints. IJCV, 2004. 1660
    • (2004) IJCV
    • Lowe, D.G.1
  • 17
    • 78650973867 scopus 로고    scopus 로고
    • Photo and video quality evaluation: Focusing on the subject
    • 1658
    • Y. Luo and X. Tang. Photo and video quality evaluation: Focusing on the subject. In ECCV, 2008. 1658
    • (2008) ECCV
    • Luo, Y.1    Tang, X.2
  • 18
    • 80052901230 scopus 로고    scopus 로고
    • The role of spatial composition in preference for color pairs
    • 1659, 1660
    • C. Nothelfer, K. B. Schloss, and S. E. Palmer. The role of spatial composition in preference for color pairs. In VSS, 2009. 1659, 1660
    • (2009) VSS
    • Nothelfer, C.1    Schloss, K.B.2    Palmer, S.E.3
  • 19
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • 1661
    • A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV, 2001. 1661
    • (2001) IJCV
    • Oliva, A.1    Torralba, A.2
  • 21
    • 33744958383 scopus 로고    scopus 로고
    • Integral histogram: A fast way to extract histograms in cartesian spaces
    • 1659
    • F. Porikli. Integral histogram: A fast way to extract histograms in cartesian spaces. In CVPR, 2005. 1659
    • (2005) CVPR
    • Porikli, F.1
  • 22
    • 80052904954 scopus 로고    scopus 로고
    • Color preferences
    • 1659, 1660
    • K. B. Schloss and S. E. Palmer. Color preferences. In VSS, 2007. 1659, 1660
    • (2007) VSS
    • Schloss, K.B.1    Palmer, S.E.2
  • 23
    • 78650973688 scopus 로고    scopus 로고
    • Photo assessment based on computational visual attention model
    • 1658
    • X. Sun, H. Yao, R. Ji, and S. Liu. Photo assessment based on computational visual attention model. In ACM MM, 2009. 1658
    • (2009) ACM MM
    • Sun, X.1    Yao, H.2    Ji, R.3    Liu, S.4
  • 24
    • 33845587831 scopus 로고    scopus 로고
    • Classification of digital photos taken by photographers or home users
    • 1658
    • H. Tong, M. Li, H. Zhang, J. He, and C. Zhang. Classification of digital photos taken by photographers or home users. In PCM, 2004. 1658
    • (2004) PCM
    • Tong, H.1    Li, M.2    Zhang, H.3    He, J.4    Zhang, C.5
  • 25
    • 84891541368 scopus 로고    scopus 로고
    • Learning no-reference quality metric by examples
    • 1658
    • H. Tong, M. Li, H. Zhang, C. Zhang, J. He, and W.-Y. Ma. Learning no-reference quality metric by examples. In ICMM, 2005. 1658
    • (2005) ICMM
    • Tong, H.1    Li, M.2    Zhang, H.3    Zhang, C.4    He, J.5    Ma, W.-Y.6
  • 26
    • 0037562189 scopus 로고    scopus 로고
    • Robust real-time object detection
    • 1660
    • P. Viola and M. Jones. Robust real-time object detection. In IJCV, 2001. 1660
    • (2001) IJCV
    • Viola, P.1    Jones, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.