메뉴 건너뛰기




Volumn 25, Issue 10, 2013, Pages 2709-2733

Discriminative learning of propagation and spatial pattern formotor imagery EEG analysis

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; BRAIN COMPUTER INTERFACE; DISCRIMINATION LEARNING; ELECTROENCEPHALOGRAPHY; HUMAN; IMAGINATION; LEARNING; MOVEMENT (PHYSIOLOGY); NEUROSCIENCE; PHYSIOLOGY; SIGNAL PROCESSING; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICS;

EID: 84887363438     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00500     Document Type: Article
Times cited : (12)

References (42)
  • 1
    • 84862180265 scopus 로고    scopus 로고
    • Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
    • Ang, K. K., Chin, Z. Y., Wang, C., Guan, C., & Zhang, H. (2012). Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Frontiers in Neuroscience, 6(39).
    • (2012) Frontiers in Neuroscience , vol.6 , Issue.39
    • Ang, K.K.1    Chin, Z.Y.2    Wang, C.3    Guan, C.4    Zhang, H.5
  • 2
    • 56349090127 scopus 로고    scopus 로고
    • Filter bank common spatial pattern (FBCSP) in brain-computer interface
    • In Proceedings of the IEEE International Joint Conference on Neural Networks and Computational Intelligence , Piscataway, NJ: IEEE
    • Ang, K. K., Chin, Z. Y., Zhang, H., & Guan, C. (2008). Filter bank common spatial pattern (FBCSP) in brain-computer interface. In Proceedings of the IEEE International Joint Conference on Neural Networks and Computational Intelligence (pp. 2390-2397). Piscataway, NJ: IEEE.
    • (2008) , pp. 2390-2397
    • Ang, K.K.1    Chin, Z.Y.2    Zhang, H.3    Guan, C.4
  • 3
    • 84857063455 scopus 로고    scopus 로고
    • Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs
    • Ang, K. K., Chin, Z. Y., Zhang, H., & Guan, C. (2012). Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs. Pattern Recognition, 45(6), 2137-2144.
    • (2012) Pattern Recognition , vol.45 , Issue.6 , pp. 2137-2144
    • Ang, K.K.1    Chin, Z.Y.2    Zhang, H.3    Guan, C.4
  • 4
    • 79956344912 scopus 로고    scopus 로고
    • Optimizing the channel selection and classification accuracy in EEG-based BCI
    • Arvaneh, M., Guan, C., Ang, K. K., & Quek, C. (2011). Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Transactions on Biomedical Engineering, 58(6), 1865-1873.
    • (2011) IEEE Transactions on Biomedical Engineering , vol.58 , Issue.6 , pp. 1865-1873
    • Arvaneh, M.1    Guan, C.2    Ang, K.K.3    Quek, C.4
  • 5
    • 84881004874 scopus 로고    scopus 로고
    • EEG data space adaptation to reduce inter-session non-stationarity in brain-computer interface
    • Arvaneh, M., Guan, C., Ang, K. K., & Quek, C. (2013a). EEG data space adaptation to reduce inter-session non-stationarity in brain-computer interface. Neural Computation, 25, 2146-2171.
    • (2013) Neural Computation , vol.25 , pp. 2146-2171
    • Arvaneh, M.1    Guan, C.2    Ang, K.K.3    Quek, C.4
  • 8
    • 0035377249 scopus 로고    scopus 로고
    • Partial directed coherence: A new concept in neural structure determination
    • Baccala, L. A., & Sameshima, K. (2001). Partial directed coherence: A new concept in neural structure determination. Biological Cybernetics, 84, 463-474.
    • (2001) Biological Cybernetics , vol.84 , pp. 463-474
    • Baccala, L.A.1    Sameshima, K.2
  • 9
    • 84870005707 scopus 로고    scopus 로고
    • The dynamic beamformer.Machine learning and interpretation in neuroimaging
    • In G. Langs, I. Rish, M. Grosse-Wentrup, & B. Murphy (Eds.), Lecture notes in computer science, Berlin: Springer
    • Bahramisharif, A., van Gerven, M. A. J., Schoffelen, J. M., Ghahramani, Z., & Heskes, T. (2012). The dynamic beamformer.Machine learning and interpretation in neuroimaging. In G. Langs, I. Rish, M. Grosse-Wentrup, & B. Murphy (Eds.), Lecture notes in computer science (vol. 7263, pp. 148-155). Berlin: Springer.
    • (2012) , vol.7263 , pp. 148-155
    • Bahramisharif, A.1    Van Gerven, M.A.J.2    Schoffelen, J.M.3    Ghahramani, Z.4    Heskes, T.5
  • 10
    • 84883023333 scopus 로고    scopus 로고
    • Online semi-supervised learning with kl distance weighting formotor imagery-based BCI
    • In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society , Piscataway, NJ: IEEE
    • Bamdadian, A., Guan, C., Ang, K.K., & Xu, J. (2012). Online semi-supervised learning with kl distance weighting formotor imagery-based BCI. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2732-2735). Piscataway, NJ: IEEE.
    • (2012) , pp. 2732-2735
    • Bamdadian, A.1    Guan, C.2    Ang, K.K.3    Xu, J.4
  • 12
    • 67651064297 scopus 로고    scopus 로고
    • Evaluation of the effective connectivity of supplementary motor areas duringmotor imagery using Granger causality mapping
    • Chen, H., Yang, Q., Liao, W., Gong, Q., & Shen, S. (2009). Evaluation of the effective connectivity of supplementary motor areas duringmotor imagery using Granger causality mapping. NeuroImage, 47(4), 1844-1853.
    • (2009) NeuroImage , vol.47 , Issue.4 , pp. 1844-1853
    • Chen, H.1    Yang, Q.2    Liao, W.3    Gong, Q.4    Shen, S.5
  • 14
    • 34247280547 scopus 로고    scopus 로고
    • Convolutive ICA for spatiotemporal analysis of EEG
    • Dyrholm, M., Makeig, S., & Hansen, L.K. (2007). Convolutive ICA for spatiotemporal analysis of EEG. Neural Computation, 19, 934-955.
    • (2007) Neural Computation , vol.19 , pp. 934-955
    • Dyrholm, M.1    Makeig, S.2    Hansen, L.K.3
  • 15
    • 84856103762 scopus 로고    scopus 로고
    • Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space
    • Ewald, A., Marzetti, L., Zappasodi, F., Meinecke, F. C., & Nolte, G. (2012). Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space. NeuroImage, 60(1), 476-488.
    • (2012) NeuroImage , vol.60 , Issue.1 , pp. 476-488
    • Ewald, A.1    Marzetti, L.2    Zappasodi, F.3    Meinecke, F.C.4    Nolte, G.5
  • 17
    • 0344849430 scopus 로고    scopus 로고
    • Designing optimal spatial filters for single-trial EEG classiffication in a movement task
    • Gerkinga, J. M., Pfurtscheller, G., & Flyvbjergc, H. (1999). Designing optimal spatial filters for single-trial EEG classiffication in a movement task. Clinical Neurophysiology, 110, 787-798.
    • (1999) Clinical Neurophysiology , vol.110 , pp. 787-798
    • Gerkinga, J.M.1    Pfurtscheller, G.2    Flyvbjergc, H.3
  • 18
    • 0035975673 scopus 로고    scopus 로고
    • Phase and amplitude analysis in time-requency space-pplication to voluntary fingermovement
    • Ginter, J. Jr., Blinowska, K. J., Kaminski, M., & Durka, P. J. (2001). Phase and amplitude analysis in time-requency space-pplication to voluntary fingermovement. Journal of Neuroscience Methods, 110(1-2), 113-124.
    • (2001) Journal of Neuroscience Methods , vol.110 , Issue.1-2 , pp. 113-124
    • Ginter Jr., J.1    Blinowska, K.J.2    Kaminski, M.3    Durka, P.J.4
  • 19
  • 20
    • 79952282285 scopus 로고    scopus 로고
    • Understanding brain connectivity patterns during motor imagery for brain-computer interfacing
    • InD.Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems, Cambridge, MA: MIT Press
    • Grosse-Wentrup, M. (2009). Understanding brain connectivity patterns during motor imagery for brain-computer interfacing. InD.Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems, 21 (pp. 561-568). Cambridge, MA: MIT Press.
    • (2009) , vol.21 , pp. 561-568
    • Grosse-Wentrup, M.1
  • 21
    • 0034796777 scopus 로고    scopus 로고
    • AR spectral analysis of EEG signals by using maximum likelihood estimation
    • Guler, I., Kiymik, M. K., Akin, M., & Alkan, A. (2001). AR spectral analysis of EEG signals by using maximum likelihood estimation. Computers in Biology and Medicine, 31(6), 441-450.
    • (2001) Computers in Biology and Medicine , vol.31 , Issue.6 , pp. 441-450
    • Guler, I.1    Kiymik, M.K.2    Akin, M.3    Alkan, A.4
  • 22
    • 10244235189 scopus 로고    scopus 로고
    • Phase synchronization for the recognition of mental tasks in a braincomputer interface
    • Gysels, E., & Celka, P. (2007). Phase synchronization for the recognition of mental tasks in a braincomputer interface. IEEE Transactions on Rehablitation Engineering, 12(4), 406-415.
    • (2007) IEEE Transactions on Rehablitation Engineering , vol.12 , Issue.4 , pp. 406-415
    • Gysels, E.1    Celka, P.2
  • 24
    • 0028793321 scopus 로고
    • Mental imagery in the motor context
    • Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33, 1419-1432.
    • (1995) Neuropsychologia , vol.33 , pp. 1419-1432
    • Jeannerod, M.1
  • 25
    • 0025987253 scopus 로고
    • A new method of the description of the information flow in the brain structures
    • Kaminski, M., & Blinowska, K. (1991). A new method of the description of the information flow in the brain structures. Biological Cybernetics, 65, 203-210.
    • (1991) Biological Cybernetics , vol.65 , pp. 203-210
    • Kaminski, M.1    Blinowska, K.2
  • 26
    • 0035433274 scopus 로고    scopus 로고
    • Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance
    • Kaminski, M., Ding, M., Truccolo, W. A., & Bressle, S. (2001). Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biological Cybernetics, 85, 145-157.
    • (2001) Biological Cybernetics , vol.85 , pp. 145-157
    • Kaminski, M.1    Ding, M.2    Truccolo, W.A.3    Bressle, S.4
  • 27
    • 0025930985 scopus 로고
    • The quantitative extraction and toporraphic mapping of the abnormal components in the clinical EEG
    • Koles, Z. J. (1991). The quantitative extraction and toporraphic mapping of the abnormal components in the clinical EEG. Electroencephalography and Clinical Neurophysiology, 79, 440-447.
    • (1991) Electroencephalography and Clinical Neurophysiology , vol.79 , pp. 440-447
    • Koles, Z.J.1
  • 28
    • 4143086938 scopus 로고    scopus 로고
    • Determination of EEG activity propagation: Pair-wise versus multichannel estimate
    • Kus, R., Kaminski, M., & Blinowska, K. J. (2004). Determination of EEG activity propagation: Pair-wise versus multichannel estimate. IEEE Transactions on Biomedical Engineering, 51(9), 1501-1510.
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , Issue.9 , pp. 1501-1510
    • Kus, R.1    Kaminski, M.2    Blinowska, K.J.3
  • 30
    • 33750595956 scopus 로고    scopus 로고
    • An extended EM algorithm for joint feature extraction and classification in brain-computer interfaces
    • Li, Y., & Guan, C. (2006). An extended EM algorithm for joint feature extraction and classification in brain-computer interfaces. Neural Computation, 18, 2730-2761.
    • (2006) Neural Computation , vol.18 , pp. 2730-2761
    • Li, Y.1    Guan, C.2
  • 31
    • 84874207140 scopus 로고    scopus 로고
    • Adaptive classification on braincomputer interfaces using reinforcement signals
    • Llera, A., Gomez, V., & Kappen, H. J. (2012). Adaptive classification on braincomputer interfaces using reinforcement signals. Neural Computation, 24, 2900-2923.
    • (2012) Neural Computation , vol.24 , pp. 2900-2923
    • Llera, A.1    Gomez, V.2    Kappen, H.J.3
  • 33
    • 77954632651 scopus 로고    scopus 로고
    • Latent causal modelling of neuroimaging data
    • In NIPS Workshop on Connectivity Inference in Neuroimaging
    • Mørup, M., Madsen, K. H., & Hansen, L. K. (2009). Latent causal modelling of neuroimaging data. In NIPS Workshop on Connectivity Inference in Neuroimaging.
    • (2009)
    • Mørup, M.1    Madsen, K.H.2    Hansen, L.K.3
  • 34
    • 33646561586 scopus 로고    scopus 로고
    • Mu rhythm (de)synchronization andEEGsingle-trial classification of different motor imagery tasks
    • Pfurtscheller, G., Brunner, C., Schlogl, A., & da Silva, F. H. L. (2006). Mu rhythm (de)synchronization andEEGsingle-trial classification of different motor imagery tasks. NeuroImage, 31(1), 153-159.
    • (2006) NeuroImage , vol.31 , Issue.1 , pp. 153-159
    • Pfurtscheller, G.1    Brunner, C.2    Schlogl, A.3    Da Silva, F.H.L.4
  • 36
    • 33750309593 scopus 로고    scopus 로고
    • Analyzing event-related EEG data with multivariate autoregressive parameters
    • Schlogl, A., & Supp, G. (2006). Analyzing event-related EEG data with multivariate autoregressive parameters. Progress in Brain Research, 159, 135-147.
    • (2006) Progress in Brain Research , vol.159 , pp. 135-147
    • Schlogl, A.1    Supp, G.2
  • 37
    • 0002537922 scopus 로고    scopus 로고
    • Algorithm 808: Arfit-a Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models
    • Schneider, T., & Neumaier, A. (2001). Algorithm 808: Arfit-a Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software (TOMS), 6, 58-65.
    • (2001) ACM Transactions on Mathematical Software (TOMS) , vol.6 , pp. 58-65
    • Schneider, T.1    Neumaier, A.2
  • 38
    • 34447549227 scopus 로고    scopus 로고
    • Evaluation of cortical connectivity during real and imagined rhythmic finger tapping
    • Stavrinou, M., Moraru, L., Cimponeriu, L., Stefania, P. D., & Bezerianos, A. (2007). Evaluation of cortical connectivity during real and imagined rhythmic finger tapping. Brain Topography, 19(3), 137-145.
    • (2007) Brain Topography , vol.19 , Issue.3 , pp. 137-145
    • Stavrinou, M.1    Moraru, L.2    Cimponeriu, L.3    Stefania, P.D.4    Bezerianos, A.5
  • 39
    • 74049086820 scopus 로고    scopus 로고
    • A new discriminative common spatial pattern method for motor imagery brain-computer interfaces
    • Thomas, K. P., Guan, C., Lau, C. T., Vinod, A. P., & Ang, K. K. (2009). A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. IEEE Transactions on Biomedical Engineering, 56(11), 2730-2733.
    • (2009) IEEE Transactions on Biomedical Engineering , vol.56 , Issue.11 , pp. 2730-2733
    • Thomas, K.P.1    Guan, C.2    Lau, C.T.3    Vinod, A.P.4    Ang, K.K.5
  • 40
    • 79951560219 scopus 로고    scopus 로고
    • Machine-learningbased coadaptive calibration for brain-computer interfaces
    • Vidaurre, C., Sannelli, C., Muller, K.-R., & Blankertz, B. (2011). Machine-learningbased coadaptive calibration for brain-computer interfaces. Neural Computation, 23, 791-816.
    • (2011) Neural Computation , vol.23 , pp. 791-816
    • Vidaurre, C.1    Sannelli, C.2    Muller, K.-R.3    Blankertz, B.4
  • 41
    • 34247210822 scopus 로고    scopus 로고
    • Amplitude and phase couplingmeasures for feature extraction in an EEG-based brainc̈computer interface
    • Wei, Q., Wang, Y., Gao, X., & Gao, S. (2007). Amplitude and phase couplingmeasures for feature extraction in an EEG-based brainc̈computer interface. Journal of Neural Engineering, 4, 120-129.
    • (2007) Journal of Neural Engineering , vol.4 , pp. 120-129
    • Wei, Q.1    Wang, Y.2    Gao, X.3    Gao, S.4
  • 42
    • 60549102756 scopus 로고    scopus 로고
    • Aseo: Amethod for the simultaneous estimation of single-trial event-related potentials and ongoing brain activities
    • Xu, L., Stoica, P., Li, J., Bressler, S. L., Shao, X., & Ding, M. (2009). Aseo: Amethod for the simultaneous estimation of single-trial event-related potentials and ongoing brain activities. IEEE Transactions on Biomedical Engineering, 56(1), 111-121.
    • (2009) IEEE Transactions on Biomedical Engineering , vol.56 , Issue.1 , pp. 111-121
    • Xu, L.1    Stoica, P.2    Li, J.3    Bressler, S.L.4    Shao, X.5    Ding, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.