메뉴 건너뛰기




Volumn 19, Issue 4, 2007, Pages 934-955

Model selection for convolutive ICA with an application to spatiotemporal analysis of EEG

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34247280547     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2007.19.4.934     Document Type: Review
Times cited : (42)

References (45)
  • 1
    • 35048888990 scopus 로고    scopus 로고
    • Unraveling spatiotemporal dynamics in FMRI recordings using complex ICA
    • C. G. Puntonet & A. Prieto Eds, Berlin: Springer-Verlag
    • Anemüller, J., Duann, J.-R., Sejnowski, T. J., & Makeig, S. (2004). Unraveling spatiotemporal dynamics in FMRI recordings using complex ICA. In C. G. Puntonet & A. Prieto (Eds.), Independent component analysis and blind signal separation (pp. 1103-1110). Berlin: Springer-Verlag.
    • (2004) Independent component analysis and blind signal separation , pp. 1103-1110
    • Anemüller, J.1    Duann, J.-R.2    Sejnowski, T.J.3    Makeig, S.4
  • 2
    • 0037211023 scopus 로고    scopus 로고
    • Adaptive separation of acoustic sources for anechoic conditions: A constrained frequency domain approach
    • Anemüller, J., & Kollmeier, B. (2003). Adaptive separation of acoustic sources for anechoic conditions: A constrained frequency domain approach. IEEE Transactions on Speech and Audio Processing, 39(1-2), 79-95.
    • (2003) IEEE Transactions on Speech and Audio Processing , vol.39 , Issue.1-2 , pp. 79-95
    • Anemüller, J.1    Kollmeier, B.2
  • 3
    • 0242578049 scopus 로고    scopus 로고
    • Complex independent component analysis of frequency-domain EEG data
    • Anemüller, J., Sejnowski, T., & Makeig, S. (2003). Complex independent component analysis of frequency-domain EEG data. Neural Networks, 16, 1313-1325.
    • (2003) Neural Networks , vol.16 , pp. 1313-1325
    • Anemüller, J.1    Sejnowski, T.2    Makeig, S.3
  • 4
    • 0032528695 scopus 로고    scopus 로고
    • Blind source separation and deconvolution: The dynamic component analysis algorithm
    • Attias, H., & Schreiner, C. E. (1998). Blind source separation and deconvolution: The dynamic component analysis algorithm. Neural Computation, 10(6), 1373-1424.
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1373-1424
    • Attias, H.1    Schreiner, C.E.2
  • 6
    • 0029411030 scopus 로고
    • An information maximization approach to blind separation and blind deconvolution
    • Bell, A., & Sejnowski, T. J. (1995). An information maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129-1159.
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.J.2
  • 8
    • 35048830889 scopus 로고    scopus 로고
    • Optimization issues in noisy gaussian ICA
    • C. G. Puntonet & A. Prieto Eds, Berlin: Springer-Verlag
    • Cardoso, J.-F., & Pham, D.-T. (2004). Optimization issues in noisy gaussian ICA. In C. G. Puntonet & A. Prieto (Eds.), Independent component analysis and blind signal separation (pp. 41-48). Berlin: Springer-Verlag.
    • (2004) Independent component analysis and blind signal separation , pp. 41-48
    • Cardoso, J.-F.1    Pham, D.-T.2
  • 9
    • 0031356330 scopus 로고    scopus 로고
    • Blind signal deconvolution by spatio-temporal decorrelation and demixing
    • J. Principe, L. Gile, N. Morgan, & E. Wilson Eds, Amelia Island, CA
    • Choi, S., & Cichocki, A. (1997). Blind signal deconvolution by spatio-temporal decorrelation and demixing. In J. Principe, L. Gile, N. Morgan, & E. Wilson (Eds.), Neural networks for signal processing (pp. 426-135). Amelia Island, CA.
    • (1997) Neural networks for signal processing , pp. 426-135
    • Choi, S.1    Cichocki, A.2
  • 11
    • 0012584080 scopus 로고    scopus 로고
    • Blind separation of convolutive mixtures: A contrast based joint diagonalization approach
    • T.-W. Lee, T.-P. Jung, S. Makeig, & T. J. Sejnowski Eds, San Diego, CA
    • Comon, P., Moreau, E., & Rota, L. (2001). Blind separation of convolutive mixtures: A contrast based joint diagonalization approach. In T.-W. Lee, T.-P. Jung, S. Makeig, & T. J. Sejnowski (Eds.), Independent Component Analysis and Blind Source Separation (pp. 686-691). San Diego, CA.
    • (2001) Independent Component Analysis and Blind Source Separation , pp. 686-691
    • Comon, P.1    Moreau, E.2    Rota, L.3
  • 12
    • 0036952404 scopus 로고    scopus 로고
    • An EM algorithm for convolutive independent component analysis
    • Deligne, S., & Gopinath, R. (2002). An EM algorithm for convolutive independent component analysis. Neurocomputing, 49, 187-211.
    • (2002) Neurocomputing , vol.49 , pp. 187-211
    • Deligne, S.1    Gopinath, R.2
  • 13
    • 1242283941 scopus 로고    scopus 로고
    • EEGlab: An open source toolbox for analysis of single-trial EEG dynamics
    • Delorme, A., & Makeig, S. (2004). EEGlab: An open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134, 9-21.
    • (2004) Journal of Neuroscience Methods , vol.134 , pp. 9-21
    • Delorme, A.1    Makeig, S.2
  • 14
    • 0036064946 scopus 로고    scopus 로고
    • From single-trial EEG to brain area dynamics
    • Delorme, A., Makeig, S., & Sejnowski, T. J. (2002). From single-trial EEG to brain area dynamics. Neurocomputing, 44-46, 1057-1064.
    • (2002) Neurocomputing , vol.44-46 , pp. 1057-1064
    • Delorme, A.1    Makeig, S.2    Sejnowski, T.J.3
  • 15
    • 0033115643 scopus 로고    scopus 로고
    • Self-whitening algorithms for adaptive equalization and deconvolution
    • Douglas, S. C., Cichocki, A., & Amari, S. (1999). Self-whitening algorithms for adaptive equalization and deconvolution. IEEE Transactions on Signal Processing, 47, 1161-1165.
    • (1999) IEEE Transactions on Signal Processing , vol.47 , pp. 1161-1165
    • Douglas, S.C.1    Cichocki, A.2    Amari, S.3
  • 16
    • 35048818525 scopus 로고    scopus 로고
    • CICAAR: Convolutive ICA with an autoregressive inverse model
    • C. G. Puntonet & A. Prieto Eds, Berlin: Springer-Verlag
    • Dyrholm, M., & Hansen, L. K. (2004). CICAAR: Convolutive ICA with an autoregressive inverse model. In C. G. Puntonet & A. Prieto (Eds.), Independent Component Analysis and Blind Signal Separation (pp. 594-601). Berlin: Springer-Verlag.
    • (2004) Independent Component Analysis and Blind Signal Separation , pp. 594-601
    • Dyrholm, M.1    Hansen, L.K.2
  • 18
    • 33745697517 scopus 로고    scopus 로고
    • Model structure selection in convolutive mixtures
    • J. Rosca, D. Erdogmus, J. C. Pripe, & S. Haykin Eds, Berlin-Springer-Verlag
    • Dyrholm, M., Makeig, S., & Hansen, L. K. (2006). Model structure selection in convolutive mixtures. In J. Rosca, D. Erdogmus, J. C. Pripe, & S. Haykin (Eds.), Independent Component Analysis and Blind Signal Separation (pp. 74-81). Berlin-Springer-Verlag.
    • (2006) Independent Component Analysis and Blind Signal Separation , pp. 74-81
    • Dyrholm, M.1    Makeig, S.2    Hansen, L.K.3
  • 20
    • 0036255856 scopus 로고    scopus 로고
    • Deconvolution and regularization with Toeplitz matrices
    • Hansen, P. C. (2002). Deconvolution and regularization with Toeplitz matrices. Numerical Algorithms, 29, 323-378.
    • (2002) Numerical Algorithms , vol.29 , pp. 323-378
    • Hansen, P.C.1
  • 24
    • 84898994677 scopus 로고    scopus 로고
    • Blind separation of delayed and convolved sources
    • M. C. Mozer, M. I. Jordan, & T. Petsche Eds, Cambridge, MA: MIT Press
    • Lee, T.-W., Bell, A. J., & Lambert, R. H. (1997). Blind separation of delayed and convolved sources. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9 (pp. 758-764). Cambridge, MA: MIT Press.
    • (1997) Advances in neural information processing systems , vol.9 , pp. 758-764
    • Lee, T.-W.1    Bell, A.J.2    Lambert, R.H.3
  • 26
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources
    • Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation, 11(2), 417-441.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 417-441
    • Lee, T.-W.1    Girolami, M.2    Sejnowski, T.J.3
  • 27
    • 85078284647 scopus 로고    scopus 로고
    • Independent component analysis of electroencephalographic data
    • D. Touretzky, M. Mozer, & M. Hasselmo Eds, Cambridge, MA: MIT Press
    • Makeig, S., Bell, A. J., Jung, T.-R, & Sejnowski, T. J. (1996). Independent component analysis of electroencephalographic data. In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 145-151). Cambridge, MA: MIT Press.
    • (1996) Advances in neural information processing systems , vol.8 , pp. 145-151
    • Makeig, S.1    Bell, A.J.2    Jung, T.-R.3    Sejnowski, T.J.4
  • 33
    • 0030676410 scopus 로고    scopus 로고
    • Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models
    • Los Alamitos, CA: IEEE Computer Society Press
    • Moulines, E., Cardoso, J.-P., & Cassiat, E. (1997). Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In International Conference on Acoustics, Speech, and Signal Processing (pp. 3617-3620). Los Alamitos, CA: IEEE Computer Society Press.
    • (1997) International Conference on Acoustics, Speech, and Signal Processing , pp. 3617-3620
    • Moulines, E.1    Cardoso, J.-P.2    Cassiat, E.3
  • 34
    • 0002537923 scopus 로고    scopus 로고
    • Estimation of parameters and eigenmodes of multivariate autoregressive models
    • Neumaier, A., & Schneider, T. (2001). Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27(1), 27-57.
    • (2001) ACM Transactions on Mathematical Software , vol.27 , Issue.1 , pp. 27-57
    • Neumaier, A.1    Schneider, T.2
  • 35
    • 1442343488 scopus 로고    scopus 로고
    • UCMINF - an algorithm for unconstrained, nonlinear optimization
    • IMM-REP-2000-19, Langby: Department of Mathematical Modeling, Technical University of Denmark
    • Nielsen, H. B. (2000). UCMINF - an algorithm for unconstrained, nonlinear optimization (Tech. Rep. IMM-REP-2000-19). Langby: Department of Mathematical Modeling, Technical University of Denmark.
    • (2000) Tech. Rep
    • Nielsen, H.B.1
  • 36
    • 23044481152 scopus 로고    scopus 로고
    • Frontal midline EEG dynamics during working memory
    • Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. NeuroImage, 27, 342-356.
    • (2005) NeuroImage , vol.27 , pp. 342-356
    • Onton, J.1    Delorme, A.2    Makeig, S.3
  • 40
    • 84898936603 scopus 로고    scopus 로고
    • Maximum likelihood blind source separation: A context-sensitive generalization of ICA
    • M. C. Mozer, M. I. Jordan, & T. Petsche Eds, Cambridge, MA: MIT Press
    • Pearlmutter, B. A., & Parra, L. C. (1997). Maximum likelihood blind source separation: A context-sensitive generalization of ICA. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9 (pp. 613-619). Cambridge, MA: MIT Press.
    • (1997) Advances in neural information processing systems , vol.9 , pp. 613-619
    • Pearlmutter, B.A.1    Parra, L.C.2
  • 41
    • 0034847167 scopus 로고    scopus 로고
    • Blind source separation of convolved sources by joint approximate diagonalization of cross-spectral density matrices
    • Los Alamitos, CA: IEEE Computer Society Press
    • Rahbar, K., & Reilly, J. (2001). Blind source separation of convolved sources by joint approximate diagonalization of cross-spectral density matrices. In International Conference on Acoustics, Speech, and Signal Processing (pp. 2745-2748). Los Alamitos, CA: IEEE Computer Society Press.
    • (2001) International Conference on Acoustics, Speech, and Signal Processing , pp. 2745-2748
    • Rahbar, K.1    Reilly, J.2
  • 42
    • 0036289944 scopus 로고    scopus 로고
    • A frequency domain approach to blind identification of mimo FIR systems driven by quasi-stationary signals
    • Los Alamitos, CA: IEEE Computer Society Press
    • Rahbar, K., Reilly, J. P., & Manton, J. H. (2002). A frequency domain approach to blind identification of mimo FIR systems driven by quasi-stationary signals. In International Conference on Acoustics, Speech, and Signal Processing (pp. 1717-1720). Los Alamitos, CA: IEEE Computer Society Press.
    • (2002) International Conference on Acoustics, Speech, and Signal Processing , pp. 1717-1720
    • Rahbar, K.1    Reilly, J.P.2    Manton, J.H.3
  • 43
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-164.
    • (1978) Annals of Statistics , vol.6 , pp. 461-164
    • Schwarz, G.1
  • 44
    • 0242295483 scopus 로고    scopus 로고
    • A natural gradient Convolutive blind source separation algorithms for speech mixtures
    • T.-W. Lee, T.-P. Jung, S. Makeig, & T. J. Sejnowski Eds, San Diego, CA, USA
    • Sun, X., & Douglas, S. (2001). A natural gradient Convolutive blind source separation algorithms for speech mixtures. In T.-W. Lee, T.-P. Jung, S. Makeig, & T. J. Sejnowski (Eds.), Independent Component Analysis and Blind Source Separation (pp. 59-64). San Diego, CA, USA.
    • (2001) Independent Component Analysis and Blind Source Separation , pp. 59-64
    • Sun, X.1    Douglas, S.2
  • 45
    • 0029723365 scopus 로고    scopus 로고
    • Blind separation of convolved sources based on information maximization
    • Kyoto, Japan
    • Torkkola, K. (1996). Blind separation of convolved sources based on information maximization. In Neural Networks for Signal Processing Proceedings (pp. 423-432). Kyoto, Japan.
    • (1996) Neural Networks for Signal Processing Proceedings , pp. 423-432
    • Torkkola, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.