메뉴 건너뛰기




Volumn , Issue , 2013, Pages 779-786

Attribute-based detection of unfamiliar classes with humans in the loop

Author keywords

attribute based classification; fine grained visual categories; human in the loop; unfamiliar class detection; visual recognition

Indexed keywords

ATTRIBUTE DETECTIONS; ATTRIBUTE-BASED; CLASSIFICATION ACCURACY; CLASSIFICATION METHODS; FINE-GRAINED VISUAL CATEGORIES; HUMAN-IN-THE-LOOP; VISION COMMUNITIES; VISUAL RECOGNITION;

EID: 84887334314     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.106     Document Type: Conference Paper
Times cited : (19)

References (39)
  • 1
    • 85162050606 scopus 로고    scopus 로고
    • Label embedding trees for large multi-class tasks
    • S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, 2010.
    • (2010) NIPS
    • Bengio, S.1    Weston, J.2    Grangier, D.3
  • 2
    • 80052896727 scopus 로고    scopus 로고
    • Automatic attribute discovery and characterization from noisy web data
    • T. Berg, A. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. In ECCV, 2010.
    • (2010) ECCV
    • Berg, T.1    Berg, A.2    Shih, J.3
  • 3
    • 85162311477 scopus 로고    scopus 로고
    • Picodes: Learning a compact code for novelcategory recognition
    • A. Bergamo et al. Picodes: Learning a compact code for novelcategory recognition. In NIPS, 2011.
    • (2011) NIPS
    • Bergamo, A.1
  • 4
    • 0023322501 scopus 로고
    • Recognition by components: A theory of human image interpretation
    • I. Biederman. Recognition by components: a theory of human image interpretation. Pyschological review, 94:115-147, 1987.
    • (1987) Pyschological Review , vol.94 , pp. 115-147
    • Biederman, I.1
  • 5
    • 84898494287 scopus 로고    scopus 로고
    • Divergence-based one-class classification using gaussian processes
    • P. Bodesheim et al. Divergence-based one-class classification using gaussian processes. In BMVC, 2012.
    • (2012) BMVC
    • Bodesheim, P.1
  • 6
    • 79960230920 scopus 로고    scopus 로고
    • Visual recognition with humans in the loop
    • S. Branson et al. Visual recognition with humans in the loop. In ECCV, 2010.
    • (2010) ECCV
    • Branson, S.1
  • 7
    • 85198028989 scopus 로고    scopus 로고
    • ImageNet: A large-scale hierarchical image database
    • J. Deng et al. ImageNet: A large-scale hierarchical image database. In CVPR, 2009.
    • (2009) CVPR
    • Deng, J.1
  • 8
    • 85162353669 scopus 로고    scopus 로고
    • Fast and balanced: Efficient label tree learning for large scale object recognition
    • J. Deng et al. Fast and balanced: Efficient label tree learning for large scale object recognition. In NIPS, 2011.
    • (2011) NIPS
    • Deng, J.1
  • 9
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2:263-286, 1995.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.1    Bakiri, G.2
  • 10
    • 84887383975 scopus 로고    scopus 로고
    • The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
    • M. Everingham et al. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://pascallin. ecs. soton. ac. uk/challenges/VOC/voc2012/ index. html.
    • Everingham, M.1
  • 11
    • 77956006784 scopus 로고    scopus 로고
    • Attribute-centric recognition for cross-category generalization
    • A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recognition for cross-category generalization. In CVPR, 2010.
    • (2010) CVPR
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3
  • 13
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • L. Fei-Fei et al. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In IEEE CVPR Workshops, 2004.
    • (2004) IEEE CVPR Workshops
    • Fei-Fei, L.1
  • 15
    • 51949092342 scopus 로고    scopus 로고
    • Learning and using taxonomies for fast visual categorization
    • G. Griffin and P. Perona. Learning and using taxonomies for fast visual categorization. In CVPR, 2008.
    • (2008) CVPR
    • Griffin, G.1    Perona, P.2
  • 16
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • N. Kumar et al. Attribute and simile classifiers for face verification. In ICCV, 2009.
    • (2009) ICCV
    • Kumar, N.1
  • 17
    • 84877615617 scopus 로고    scopus 로고
    • Leafsnap: A computer vision system for automatic plant species identification
    • October
    • N. Kumar et al. Leafsnap: A computer vision system for automatic plant species identification. In The 12th European Conference on Computer Vision (ECCV), October 2012.
    • (2012) The 12th European Conference on Computer Vision (ECCV)
    • Kumar, N.1
  • 18
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert et al. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1
  • 19
    • 77955986573 scopus 로고    scopus 로고
    • Object-graphs for context-aware category discovery
    • Y. J. Lee and K. Grauman. Object-graphs for context-aware category discovery. In CVPR, 2010.
    • (2010) CVPR
    • Lee, Y.J.1    Grauman, K.2
  • 20
    • 84887364465 scopus 로고    scopus 로고
    • A joint learning framework for attribute models and object descriptions
    • D. Mahajan et al. A joint learning framework for attribute models and object descriptions. In CVPR, 2011.
    • (2011) CVPR
    • Mahajan, D.1
  • 21
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review-part 1: Statistical approaches
    • M. Markou and S. Singh. Novelty detection: a review-part 1: statistical approaches. Signal Processing, 83:2481-2497, 2003.
    • (2003) Signal Processing , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 22
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review-part 2: Neural network based approaches
    • M. Markou and S. Singh. Novelty detection: a review-part 2: neural network based approaches. Signal Processing, 83:2499-2521, 2003.
    • (2003) Signal Processing , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 23
    • 70450184086 scopus 로고    scopus 로고
    • Dictionary-free categorization of very similar objects via stacked evidence trees
    • G. Martinez-Muñoz et al. Dictionary-free categorization of very similar objects via stacked evidence trees. In CVPR, 2009.
    • (2009) CVPR
    • Martinez-Muñoz, G.1
  • 24
    • 65249121810 scopus 로고    scopus 로고
    • Automated flower classification over a large number of classes
    • M. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In ICCVGIP, 2008.
    • (2008) ICCVGIP
    • Nilsback, M.1    Zisserman, A.2
  • 25
    • 80053456996 scopus 로고    scopus 로고
    • Zero-Shot Learning with Semantic Output Codes
    • M. Palatucci et al. Zero-Shot Learning with Semantic Output Codes. In NIPS, 2009.
    • (2009) NIPS
    • Palatucci, M.1
  • 26
    • 80052900722 scopus 로고    scopus 로고
    • Interactively building a discriminative vocabulary of nameable attributes
    • D. Parikh and K. Grauman. Interactively building a discriminative vocabulary of nameable attributes. In CVPR, 2011.
    • (2011) CVPR
    • Parikh, D.1    Grauman, K.2
  • 27
  • 28
    • 77954860675 scopus 로고    scopus 로고
    • Vision of a visipedia
    • aug.
    • P. Perona. Vision of a visipedia. Proceedings of the IEEE, 98(8):1526-1534, aug. 2010.
    • (2010) Proceedings of the IEEE , vol.98 , Issue.8 , pp. 1526-1534
    • Perona, P.1
  • 29
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for SV machines
    • J. Platt. Probabilities for SV machines. In NIPS, pages 61-74, 1999.
    • (1999) NIPS , pp. 61-74
    • Platt, J.1
  • 30
    • 42549095587 scopus 로고    scopus 로고
    • Dataset issues in object recognition
    • Springer
    • J. Ponce et al. Dataset issues in object recognition. In Towards Category-Level Object Recognition, pages 29-48. Springer, 2006.
    • (2006) Towards Category-Level Object Recognition , pp. 29-48
    • Ponce, J.1
  • 31
    • 77955989949 scopus 로고    scopus 로고
    • What helps where-and why? Semantic relatedness for knowledge transfer
    • M. Rohrbach et al. What helps where-and why? semantic relatedness for knowledge transfer. In CVPR, 2010.
    • (2010) CVPR
    • Rohrbach, M.1
  • 32
    • 39749186006 scopus 로고    scopus 로고
    • LabelMe: A database and web-based tool for image annotation
    • B. C. Russell et al. LabelMe: A database and web-based tool for image annotation. IJCV, 77(1-3):157-173, 2008.
    • (2008) IJCV , vol.77 , Issue.1-3 , pp. 157-173
    • Russell, B.C.1
  • 33
    • 51849153839 scopus 로고    scopus 로고
    • Predicting biometric facial recognition failure with similarity surfaces and support vector machines
    • W. J. Scheirer, A. Bendale, and T. E. Boult. Predicting biometric facial recognition failure with similarity surfaces and support vector machines. In IEEE CVPR Workshops, 2008.
    • (2008) IEEE CVPR Workshops
    • Scheirer, W.J.1    Bendale, A.2    Boult, T.E.3
  • 35
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR, 2011.
    • (2011) CVPR
    • Torralba, A.1    Efros, A.A.2
  • 37
    • 84856635994 scopus 로고    scopus 로고
    • Multiclass recognition and part localization with humans in the loop
    • C. Wah et al. Multiclass recognition and part localization with humans in the loop. In ICCV, 2011.
    • (2011) ICCV
    • Wah, C.1
  • 39
    • 84898919358 scopus 로고    scopus 로고
    • Learning models for object recognition from natural language descriptions
    • J. Wang et al. Learning models for object recognition from natural language descriptions. In BMVC, 2009.
    • (2009) BMVC
    • Wang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.