메뉴 건너뛰기




Volumn 32, Issue 29, 2013, Pages 5062-5076

Confidence intervals after multiple imputation: Combining profile likelihood information from logistic regressions

Author keywords

Bias reduction; Missing covariate values; Non convergence of maximum likelihood estimation; Penalized likelihood; Small samples

Indexed keywords

ADULT; AGED; ALZHEIMER DISEASE; ANALYTIC METHOD; ARTICLE; BAYESIAN LEARNING; CASE CONTROL STUDY; CLINICAL ARTICLE; COMBINATION OF PENALIZED LIKELIHOOD PROFILE; COMPUTER SIMULATION; CONFIDENCE INTERVAL; CONTROLLED STUDY; CUMULATIVE DISTRIBUTION FUNCTION; FEMALE; HIDDEN MARKOV MODEL; HUMAN; INFORMATION PROCESSING; LOGISTIC REGRESSION ANALYSIS; MALE; RUBIN RULE; SELF ESTEEM; SOCIAL BEHAVIOR; STATISTICAL MODEL; STATISTICAL PARAMETERS;

EID: 84887260365     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.5899     Document Type: Article
Times cited : (25)

References (44)
  • 2
    • 0037199788 scopus 로고    scopus 로고
    • A solution to the problem of separation in logistic regression
    • DOI: 10.1002/sim.1047.
    • Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21:2409-2419. DOI: 10.1002/sim.1047.
    • (2002) Statistics in Medicine , vol.21 , pp. 2409-2419
    • Heinze, G.1    Schemper, M.2
  • 3
    • 33845900763 scopus 로고    scopus 로고
    • A comparative investiations of methods for logistic regression with separated or nearly separated data
    • DOI: 10.1002/sim.2687.
    • Heinze G. A comparative investiations of methods for logistic regression with separated or nearly separated data. Statistics in Medicine 2006; 25:4216-4226. DOI: 10.1002/sim.2687.
    • (2006) Statistics in Medicine , vol.25 , pp. 4216-4226
    • Heinze, G.1
  • 4
    • 84954932200 scopus 로고
    • Teaching about approximate confidence regions based on maximum likelihood estimation
    • Meeker WQ, Escobar LA. Teaching about approximate confidence regions based on maximum likelihood estimation. American Statistician 1995; 49:48-53.
    • (1995) American Statistician , vol.49 , pp. 48-53
    • Meeker, W.Q.1    Escobar, L.A.2
  • 5
    • 77952558002 scopus 로고    scopus 로고
    • A note on Bayesian inference after multiple imputation
    • DOI: 10.1198/tast.2010.09109.
    • Zhou X, Reiter JP. A note on Bayesian inference after multiple imputation. The American Statistician 2010; 64:159-163. DOI: 10.1198/tast.2010.09109.
    • (2010) The American Statistician , vol.64 , pp. 159-163
    • Zhou, X.1    Reiter, J.P.2
  • 6
    • 84887220611 scopus 로고    scopus 로고
    • The bootstrap and Markov chain Monte Carlo. Unpublished draft. Available at: (27 Dec 2011).
    • Efron B. The bootstrap and Markov chain Monte Carlo. Unpublished draft 2011. Available at: http://www-stat.stanford.edu/~ckirby/brad/papers/ (27 Dec 2011).
    • (2011)
    • Efron, B.1
  • 7
    • 0023868890 scopus 로고
    • A method for computing profile-likelihood based confidence intervals
    • Venzon DJ, Moolgavkar AH. A method for computing profile-likelihood based confidence intervals. Applied Statistics 1988; 37:87-94.
    • (1988) Applied Statistics , vol.37 , pp. 87-94
    • Venzon, D.J.1    Moolgavkar, A.H.2
  • 8
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80:27-38.
    • (1993) Biometrika , vol.80 , pp. 27-38
    • Firth, D.1
  • 9
    • 78649533600 scopus 로고    scopus 로고
    • Properties and implementation of Jeffreys' prior in binomial regression models
    • DOI: 10.1198/016214508000000779.
    • Chen MH, Ibrahim JG, Kim S. Properties and implementation of Jeffreys' prior in binomial regression models. Journal of the American Statistical Association 2008; 103:1659-1664. DOI: 10.1198/016214508000000779.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 1659-1664
    • Chen, M.H.1    Ibrahim, J.G.2    Kim, S.3
  • 10
    • 0001972601 scopus 로고
    • The large-sample distribution of the likelihood ratio for testing composite hypotheses
    • Wilks SS. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Annals of Mathematical Statistics 1938; 9:60-62.
    • (1938) Annals of Mathematical Statistics , vol.9 , pp. 60-62
    • Wilks, S.S.1
  • 11
    • 33846805720 scopus 로고    scopus 로고
    • Confidence intervals for multinomial logistic regression in sparse data
    • DOI: 10.1002/sim.2518.
    • Bull SB, Lewinger JP, Lee SSF. Confidence intervals for multinomial logistic regression in sparse data. Statistics in Medicine 2007; 26:903-918. DOI: 10.1002/sim.2518.
    • (2007) Statistics in Medicine , vol.26 , pp. 903-918
    • Bull, S.B.1    Lewinger, J.P.2    Lee, S.S.F.3
  • 12
    • 84887241871 scopus 로고    scopus 로고
    • logistf: Firth's bias reduced logistic regression. R package version 1.20. Available at: (16 May 2013).
    • Heinze G, Ploner M, Dunkler D, Southworth H. logistf: Firth's bias reduced logistic regression. R package version 1.20. Available at: http://cran.r-project.org/web/packages/logistf/index.html (16 May 2013).
    • Heinze, G.1    Ploner, M.2    Dunkler, D.3    Southworth, H.4
  • 13
    • 70450240718 scopus 로고    scopus 로고
    • Bias reduction and a solution for separation of logistic regression with missing covariates
    • DOI: 10.1111/j.1541-0420.2008.01186.x.
    • Maiti T, Pradhan V. Bias reduction and a solution for separation of logistic regression with missing covariates. Biometrics 2009; 65:1262-1269. DOI: 10.1111/j.1541-0420.2008.01186.x.
    • (2009) Biometrics , vol.65 , pp. 1262-1269
    • Maiti, T.1    Pradhan, V.2
  • 14
    • 77952545665 scopus 로고    scopus 로고
    • Bias correction in logistic regression with missing categorical covariates
    • DOI: 10.1016/j.jspi.2010.02.018.
    • Das U, Maiti T, Pradhan V. Bias correction in logistic regression with missing categorical covariates. Journal of Statistical Planning and Inference 2010; 140:2478-2485. DOI: 10.1016/j.jspi.2010.02.018.
    • (2010) Journal of Statistical Planning and Inference , vol.140 , pp. 2478-2485
    • Das, U.1    Maiti, T.2    Pradhan, V.3
  • 15
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: issues and guidance for practice
    • DOI: 10.1002/sim.4067.
    • White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Statistics in Medicine 2011; 30:377-399. DOI: 10.1002/sim.4067.
    • (2011) Statistics in Medicine , vol.30 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 18
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility
    • Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 2000; 10:325-337.
    • (2000) Statistics and Computing , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 19
    • 69049098269 scopus 로고    scopus 로고
    • Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines
    • DOI: 10.1186/1471-2288-9-57.
    • Marshall A, Altman DG, Holder RL, Royston P. Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines. BMC Medical Research Methodology 2009; 9:57. DOI: 10.1186/1471-2288-9-57.
    • (2009) BMC Medical Research Methodology , vol.9 , pp. 57
    • Marshall, A.1    Altman, D.G.2    Holder, R.L.3    Royston, P.4
  • 20
    • 0002738159 scopus 로고
    • Parameter orthogonality and approximate conditional inference (with discussion)
    • Cox DR, Reid N. Parameter orthogonality and approximate conditional inference (with discussion). Journal of the Royal Statistical Society B 1987; 49:1-39.
    • (1987) Journal of the Royal Statistical Society B , vol.49 , pp. 1-39
    • Cox, D.R.1    Reid, N.2
  • 23
    • 0000342633 scopus 로고
    • Adjusted versions of profile likelihood and directed likelihood, and extended likelihood
    • Barndorff-Nielsen OE. Adjusted versions of profile likelihood and directed likelihood, and extended likelihood. Journal of the Royal Statistical Society B 1994; 56:125-140.
    • (1994) Journal of the Royal Statistical Society B , vol.56 , pp. 125-140
    • Barndorff-Nielsen, O.E.1
  • 24
    • 0034651981 scopus 로고    scopus 로고
    • Saddlepoint approximations for small sample logistic regression problems
    • Platt RW. Saddlepoint approximations for small sample logistic regression problems. Statistics in Medicine 2000; 19:323-334.
    • (2000) Statistics in Medicine , vol.19 , pp. 323-334
    • Platt, R.W.1
  • 25
    • 2442597073 scopus 로고    scopus 로고
    • Approximate multivariate conditional inference using the adjusted profile likelihood
    • Kolassa JE. Approximate multivariate conditional inference using the adjusted profile likelihood. The Canadian Journal of Statistics 2004; 32:5-14.
    • (2004) The Canadian Journal of Statistics , vol.32 , pp. 5-14
    • Kolassa, J.E.1
  • 28
    • 21844490287 scopus 로고
    • Some diagnostics of maximum likelihood and posterior nonnormality
    • Kass RE, Slate EH. Some diagnostics of maximum likelihood and posterior nonnormality. The Annals of Statistics 1994; 22:668-695.
    • (1994) The Annals of Statistics , vol.22 , pp. 668-695
    • Kass, R.E.1    Slate, E.H.2
  • 29
    • 0000496222 scopus 로고
    • Transformations of the explanatory variables in the logistic regression model for binary data
    • Kay R, Little S. Transformations of the explanatory variables in the logistic regression model for binary data. Biometrika 1987; 74:495-501.
    • (1987) Biometrika , vol.74 , pp. 495-501
    • Kay, R.1    Little, S.2
  • 30
    • 0004509186 scopus 로고
    • Regression using fractional polynomials of continuous covariates: parismonious parametric modelling
    • Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parismonious parametric modelling. Applied Statistics 1994; 43:429-567.
    • (1994) Applied Statistics , vol.43 , pp. 429-567
    • Royston, P.1    Altman, D.G.2
  • 31
    • 0030343462 scopus 로고    scopus 로고
    • Distinguishing "missing at random" and "missing completely at random"
    • Heitjan DF, Basu S. Distinguishing "missing at random" and "missing completely at random". The American Statistician 1996; 50:207-213.
    • (1996) The American Statistician , vol.50 , pp. 207-213
    • Heitjan, D.F.1    Basu, S.2
  • 35
    • 2242479444 scopus 로고    scopus 로고
    • Estimating and using propensity scores with partially missing data
    • DOI: 10.1080/01621459.2000.10474263.
    • D'Agostino RB, Jr., Rubin DB. Estimating and using propensity scores with partially missing data. Journal of the American Statistical Association 2000; 95:749-759. DOI: 10.1080/01621459.2000.10474263.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 749-759
    • D'Agostino Jr, R.B.1    Rubin, D.B.2
  • 36
    • 84887220321 scopus 로고    scopus 로고
    • Kompensation und ephemer-fragiles Selbst: Eine individualpsychologische Analyse der Alzheimer Krankheit
    • in German).
    • Kropiunigg U. Kompensation und ephemer-fragiles Selbst: Eine individualpsychologische Analyse der Alzheimer Krankheit. Zeitschrift für Individualpsychologie 1999; 24:186-202. (in German).
    • (1999) Zeitschrift für Individualpsychologie , vol.24 , pp. 186-202
    • Kropiunigg, U.1
  • 37
    • 79960450252 scopus 로고
    • On Bayesian analysis of generalized linear models using Jeffreys's prior
    • DOI: 10.1080/01621459.1991.10475141.
    • Ibrahim JG, Laud PW. On Bayesian analysis of generalized linear models using Jeffreys's prior. Journal of the American Association 1991; 86:981-986. DOI: 10.1080/01621459.1991.10475141.
    • (1991) Journal of the American Association , vol.86 , pp. 981-986
    • Ibrahim, J.G.1    Laud, P.W.2
  • 39
    • 54049109688 scopus 로고    scopus 로고
    • What improves with increased missing data imputations?
    • DOI: 10.1080/1070551080233907.
    • Bodner TE. What improves with increased missing data imputations? Structural Equation Modeling: A Multidisciplinary Journal 2008; 15:651-675. DOI: 10.1080/1070551080233907.
    • (2008) Structural Equation Modeling: A Multidisciplinary Journal , vol.15 , pp. 651-675
    • Bodner, T.E.1
  • 40
    • 41149087694 scopus 로고    scopus 로고
    • CODA: convergence diagnostics and output analysis for MCMC
    • Plummer M, Best N, Cowles K, Vines K. CODA: convergence diagnostics and output analysis for MCMC. R News 2006; 6:7-12.
    • (2006) R News , vol.6 , pp. 7-12
    • Plummer, M.1    Best, N.2    Cowles, K.3    Vines, K.4
  • 41
    • 63049088788 scopus 로고    scopus 로고
    • MCPMod: an R package for the design and analysis of dose-finding studies
    • Bornkamp B, Pinheiro JC, Bretz F. MCPMod: an R package for the design and analysis of dose-finding studies. Journal of Statistical Software 2009; 29(7):1-23.
    • (2009) Journal of Statistical Software , vol.29 , Issue.7 , pp. 1-23
    • Bornkamp, B.1    Pinheiro, J.C.2    Bretz, F.3
  • 42
    • 34249902289 scopus 로고    scopus 로고
    • Curvature-adjusted optimal design of sampling times for the inference of pharmacokinetic compartment models
    • DOI: 10.1002/sim.2736.
    • Daimon T, Goto M. Curvature-adjusted optimal design of sampling times for the inference of pharmacokinetic compartment models. Statistics in Medicine 2007; 26:2799-2812. DOI: 10.1002/sim.2736.
    • (2007) Statistics in Medicine , vol.26 , pp. 2799-2812
    • Daimon, T.1    Goto, M.2
  • 43
    • 0034651977 scopus 로고    scopus 로고
    • Permutation tests for JoinPoint regression with applications to cancer rates
    • DOI: 10.1002/(SICI)1097-0258(20000215)19:3<335::AID-SIM336>3.0.CO;2-Z.
    • Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for JoinPoint regression with applications to cancer rates. Statistics in Medicine 2000; 19:335-351. DOI: 10.1002/(SICI)1097-0258(20000215)19:3<335::AID-SIM336>3.0.CO;2-Z.
    • (2000) Statistics in Medicine , vol.19 , pp. 335-351
    • Kim, H.J.1    Fay, M.P.2    Feuer, E.J.3    Midthune, D.N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.