메뉴 건너뛰기




Volumn 140, Issue 9, 2010, Pages 2478-2485

Bias correction in logistic regression with missing categorical covariates

Author keywords

Bias; EM algorithm; Maximum likelihood estimation; Missing at random

Indexed keywords


EID: 77952545665     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jspi.2010.02.018     Document Type: Article
Times cited : (7)

References (19)
  • 5
    • 0025223349 scopus 로고
    • A randomized phase II study of acivicin and 4 deoxydoxorubicin in patients with hepatocellular carcinoma in an Eastern Cooperative Oncology Group Study
    • Falkson G., Cnaan A., Simson I.W. A randomized phase II study of acivicin and 4 deoxydoxorubicin in patients with hepatocellular carcinoma in an Eastern Cooperative Oncology Group Study. American Journal of Clinical Oncology 1990, 13:510-515.
    • (1990) American Journal of Clinical Oncology , vol.13 , pp. 510-515
    • Falkson, G.1    Cnaan, A.2    Simson, I.W.3
  • 7
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80:27-38.
    • (1993) Biometrika , vol.80 , pp. 27-38
    • Firth, D.1
  • 9
    • 33845900763 scopus 로고    scopus 로고
    • A comparative investigation of methods for logistic regression with separated or nearly separated data
    • Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Statistics in Medicine 2006, 25:4216-4226.
    • (2006) Statistics in Medicine , vol.25 , pp. 4216-4226
    • Heinze, G.1
  • 10
    • 0037199788 scopus 로고    scopus 로고
    • A solution to the problem of separation in logistic regression
    • Heinze G., Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002, 21:2409-2419.
    • (2002) Statistics in Medicine , vol.21 , pp. 2409-2419
    • Heinze, G.1    Schemper, M.2
  • 11
    • 0035102876 scopus 로고    scopus 로고
    • Maximum likelihood analysis of logistic regression models with incomplete covariate data and auxiliary information
    • Horton N.J., Laird N.M. Maximum likelihood analysis of logistic regression models with incomplete covariate data and auxiliary information. Biometrics 2001, 57:34-42.
    • (2001) Biometrics , vol.57 , pp. 34-42
    • Horton, N.J.1    Laird, N.M.2
  • 14
    • 84873751778 scopus 로고
    • An invariant form for the prior probability in estimation problem
    • Jeffreys H. An invariant form for the prior probability in estimation problem. Proceedings of Royal Society, Series A 1946, 186:453-461.
    • (1946) Proceedings of Royal Society, Series A , vol.186 , pp. 453-461
    • Jeffreys, H.1
  • 17
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis T.A. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 1982, 44:226-233.
    • (1982) Journal of the Royal Statistical Society, Series B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 18
    • 58749109982 scopus 로고    scopus 로고
    • A comparative study of the bias corrected estimates in logistic regression
    • Maiti T., Pradhan V. A comparative study of the bias corrected estimates in logistic regression. Statistical Methods in Medical Research 2008, 27:621-634.
    • (2008) Statistical Methods in Medical Research , vol.27 , pp. 621-634
    • Maiti, T.1    Pradhan, V.2
  • 19
    • 0000086228 scopus 로고
    • Moments and distributions of estimates of population parameters from fragmentary samples
    • Wilks S.S. Moments and distributions of estimates of population parameters from fragmentary samples. Annals of Mathematical Statistics 1932, 3:163-195.
    • (1932) Annals of Mathematical Statistics , vol.3 , pp. 163-195
    • Wilks, S.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.