메뉴 건너뛰기




Volumn 2013, Issue , 2013, Pages

A hierarchical graph model for object cosegmentation

Author keywords

Belief propagation; Cosegmentation; Guided filtering; Heat source; Hierarchical graph; Random walks; Saliency detection

Indexed keywords

BELIEF PROPAGATION; CO SEGMENTATIONS; GUIDED FILTERING; HEAT SOURCES; HIERARCHICAL GRAPHS; RANDOM WALK; SALIENCY DETECTION;

EID: 84887088468     PISSN: 16875176     EISSN: 16875281     Source Type: Journal    
DOI: 10.1186/1687-5281-2013-11     Document Type: Article
Times cited : (1)

References (26)
  • 6
    • 50649087214 scopus 로고    scopus 로고
    • Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes
    • Rio de Janeiro
    • Cao L, Fei-Fei L: Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. In IEEE International Conference on Computer Vision. Rio de Janeiro; 2007:1-8.
    • (2007) IEEE International Conference on Computer Vision , pp. 1-8
    • Cao, L.1    Fei-Fei, L.2
  • 8
    • 33745948591 scopus 로고    scopus 로고
    • LOCUS: Learning object classes with unsupervised segmentation
    • DOI 10.1109/ICCV.2005.148, 1541329, Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005
    • Winn J, Jojic N: LOCUS - learning object classes with unsupervised segmentation. In IEEE International Conference on Computer Vision. Beijing; 2005:756-763. (Pubitemid 44055031)
    • (2005) Proceedings of the IEEE International Conference on Computer Vision , vol.I , pp. 756-763
    • Winn, J.1    Jojic, N.2
  • 11
    • 51949108077 scopus 로고    scopus 로고
    • Unsupervised learning of probabilistic object models (POMs) for object classification, segmentation and recognition
    • Anchorage
    • Chen Y, Zhu L, Yuille A, Zhang H: Unsupervised learning of probabilistic object models (POMs) for object classification, segmentation and recognition. In IEEE Conference on Computer Vision and Pattern Recognition. Anchorage; 2008:1-8.
    • (2008) IEEE Conference on Computer Vision and Pattern Recognition , pp. 1-8
    • Chen, Y.1    Zhu, L.2    Yuille, A.3    Zhang, H.4
  • 12
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts
    • 10.1109/TPAMI.2004.1262177
    • Kolmogorov V, Zabih R: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell 2004,2(26):147-159.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell , vol.2 , Issue.26 , pp. 147-159
    • Kolmogorov, V.1    Zabih, R.2
  • 20
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic Latent Semantic Analysis
    • DOI 10.1023/A:1007617005950
    • Hofmann T: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn 2001, 43:177-196. (Pubitemid 32872403)
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 25
    • 84877632511 scopus 로고    scopus 로고
    • GrabCut - Interactive foreground extraction using iterated graph cuts
    • DOI 10.1145/1015706.1015720, ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH 2004
    • Rother C, Kolmogorov V, Blake A: Grabcut - interactive foreground extraction using iterated graph cuts. ACM Trans Graph 2004,23(3):309-314. (Pubitemid 40163720)
    • (2004) ACM Transactions on Graphics , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.