메뉴 건너뛰기




Volumn 107, Issue , 2004, Pages 381-385

Using symbolic knowledge in the UMLS to disambiguate words in small datasets with a Naïve Bayes classifier

Author keywords

Artificial intelligence; machine learning; na ve Bayes; small datasets; symbolic knowledge; UMLS; Unified Medical Language System; word sense disambiguation

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DETERIORATION; KNOWLEDGE BASED SYSTEMS; LEARNING ALGORITHMS; NATURAL LANGUAGE PROCESSING SYSTEMS; SEMANTICS; CLASSIFIERS; MACHINE LEARNING;

EID: 84887084077     PISSN: 09269630     EISSN: 18798365     Source Type: Book Series    
DOI: 10.3233/978-1-60750-949-3-381     Document Type: Article
Times cited : (4)

References (14)
  • 1
    • 0002487107 scopus 로고    scopus 로고
    • Word sense disambiguation: The state of the art
    • Ide N, Veronis J. Word sense disambiguation: The state of the art. Computational Linguistics 1998;24(1):1-41.
    • (1998) Computational Linguistics , vol.24 , Issue.1 , pp. 1-41
    • Ide, N.1    Veronis, J.2
  • 2
    • 85016663484 scopus 로고    scopus 로고
    • Comparative experiments on disambiguating word senses: An illustration of the role of bias in machine learning
    • Mooney RJ. Comparative experiments on disambiguating word senses: An illustration of the role of bias in machine learning. In: Conference on Empirical Methods in Natural Language Processing', 1996.
    • (1996) Conference on Empirical Methods in Natural Language Processing'
    • Mooney, R.J.1
  • 5
    • 0002371406 scopus 로고    scopus 로고
    • Disambiguating proteins, genes, and rna in text: A machine learning approach
    • Hatzivassiloglou V, Duboue PA. Disambiguating proteins, genes, and rna in text: A machine learning approach. Bioin-formatics 2001;2(10):1-10.
    • (2001) Bioin-formatics , vol.2 , Issue.10 , pp. 1-10
    • Hatzivassiloglou, V.1    Duboue, P.A.2
  • 6
    • 0035564886 scopus 로고    scopus 로고
    • Disambiguating ambiguous biomedical terms in biomedical narrative text: An unsupervised method
    • Liu H, Lussier YA, Friedman C. Disambiguating ambiguous biomedical terms in biomedical narrative text: An unsupervised method. Journal of Biomedical Informatics 2001;34:249-61.
    • (2001) Journal of Biomedical Informatics , vol.34 , pp. 249-261
    • Liu, H.1    Lussier, Y.A.2    Friedman, C.3
  • 9
    • 0036828375 scopus 로고    scopus 로고
    • Automatic resolution of ambiguous terms based on machine learning and conceptual relations in the umls
    • Liu H, Johnson S, Friedman C. Automatic resolution of ambiguous terms based on machine learning and conceptual relations in the UMLS. JAMIA 2002;9(6):621-36.
    • (2002) JAMIA , vol.9 , Issue.6 , pp. 621-636
    • Liu, H.1    Johnson, S.2    Friedman, C.3
  • 10
    • 0031981002 scopus 로고    scopus 로고
    • The unified medical language system: An informatics research collaboration
    • Humphreys B, Lindberg D, Schoolman H, Barnett G. The unified medical language system: An informatics research collaboration. JAMIA 1998;5(1):1-11.
    • (1998) JAMIA , vol.5 , Issue.1 , pp. 1-11
    • Humphreys, B.1    Lindberg, D.2    Schoolman, H.3    Barnett, G.4
  • 12
    • 0035752436 scopus 로고    scopus 로고
    • Developing a test collection for biomedical word sense disambiguation
    • Weeber M, Mork J, Aronson A. Developing a test collection for biomedical word sense disambiguation. In: AMIA Symp.; 2001. p. 746-50.
    • (2001) AMIA Symp. , pp. 746-750
    • Weeber, M.1    Mork, J.2    Aronson, A.3
  • 13
    • 0035752429 scopus 로고    scopus 로고
    • Effective mapping of biomedical text to the umls metathesaurus: The metamap program
    • Aronson A. Effective mapping of biomedical text to the UMLS Metathesaurus: The MetaMap program. In: AMIA Symp.; 2001. p. 17-21.
    • (2001) AMIA Symp. , pp. 17-21
    • Aronson, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.