메뉴 건너뛰기




Volumn 35, Issue 5, 2013, Pages

Normalized iterative hard thresholding for matrix completion

Author keywords

Alternating projection; Compressed sensing; Low rank approximation; Matrix completion

Indexed keywords

APPROXIMATION THEORY; COMPRESSED SENSING; ITERATIVE METHODS; RECOVERY;

EID: 84886858077     PISSN: 10648275     EISSN: 10957200     Source Type: Journal    
DOI: 10.1137/120876459     Document Type: Conference Paper
Times cited : (148)

References (45)
  • 1
    • 79957444557 scopus 로고    scopus 로고
    • Compressed sensing: How sharp is the restricted isometry property?
    • J. D. Blanchard, C. Cartis, and J. Tanner, Compressed sensing: How sharp is the restricted isometry property?, SIAM Rev., 53 (2011), pp. 105-125.
    • (2011) SIAM Rev , vol.53 , pp. 105-125
    • Blanchard, J.D.1    Cartis, C.2    Tanner, J.3
  • 2
    • 69949164527 scopus 로고    scopus 로고
    • Iterative hard thresholding for compressed sensing
    • T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing, Appl. Comput. Harmon. Anal., 27 (2009), pp. 265-274.
    • (2009) Appl. Comput. Harmon. Anal. , vol.27 , pp. 265-274
    • Blumensath, T.1    Davies, M.E.2
  • 3
    • 77949703326 scopus 로고    scopus 로고
    • Normalized iterative hard thresholding: Guaranteed stability and performance
    • T. Blumensath and M. E. Davies, Normalized iterative hard thresholding: Guaranteed stability and performance, IEEE J. Selected Topics Signal Process., 4 (2010), pp. 298-309.
    • (2010) IEEE J. Selected Topics Signal Process. , vol.4 , pp. 298-309
    • Blumensath, T.1    Davies, M.E.2
  • 4
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., 51 (2009), pp. 34-81.
    • (2009) SIAM Rev , vol.51 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 5
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • J.-F. Cai, E. J. Candes, and Z. Sun, A singular value thresholding algorithm for matrix completion, SIAM J. Optim., 20 (2010), pp. 1956-1982.
    • (2010) SIAM J. Optim. , vol.20 , pp. 1956-1982
    • Cai, J.-F.1    Candes, E.J.2    Sun, Z.3
  • 6
    • 84886807367 scopus 로고    scopus 로고
    • Fast singular value thresholding without singular value decomposition
    • Houston, TX, 2010
    • J. F. Cai and S. Osher, Fast Singular Value Thresholding without Singular Value Decomposition, Tech. report, Rice University, Houston, TX, 2010.
    • Tech. Report, Rice University
    • Cai, J.F.1    Osher, S.2
  • 8
    • 42649140570 scopus 로고    scopus 로고
    • The restricted isometry property and its implications for compressed sensing
    • E. J. Candes, The restricted isometry property and its implications for compressed sensing, C.R. Math. Acad. Sci. Paris, 346 (2008), pp. 589-592.
    • (2008) C.R. Math. Acad. Sci. Paris , vol.346 , pp. 589-592
    • Candes, E.J.1
  • 9
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • E. J. Candes and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009), pp. 717-772.
    • (2009) Found. Comput. Math. , vol.9 , pp. 717-772
    • Candes, E.J.1    Recht, B.2
  • 10
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • DOI 10.1002/cpa.20124
    • E. J. Candes, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., 59 (2006), pp. 1207-1223. (Pubitemid 43988295)
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.8 , pp. 1207-1223
    • Candes, E.J.1    Romberg, J.K.2    Tao, T.3
  • 11
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • DOI 10.1109/TIT.2005.858979
    • E. J. Candes and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51 (2005), pp. 4203-4215. (Pubitemid 41800353)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 12
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • E. J. Candes and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE Trans. Inform. Theory, 56 (2009), pp. 2053-1080.
    • (2009) IEEE Trans. Inform. Theory , vol.56 , pp. 1080-2053
    • Candes, E.J.1    Tao, T.2
  • 13
    • 57349181932 scopus 로고    scopus 로고
    • Compressed sensing and best k-term approximation
    • A. Cohen, W. Dahmen, and R. De Vore, Compressed sensing and best k-term approximation, J. Amer. Math. Soc., 22 (2009), pp. 211-231.
    • (2009) J. Amer. Math. Soc. , vol.22 , pp. 211-231
    • Cohen, A.1    Dahmen, W.2    De Vore, R.3
  • 14
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing signal reconstruction
    • W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction, IEEE Trans. Inform. Theory, 55 (2009), pp. 2230-2249.
    • (2009) IEEE Trans. Inform. Theory , vol.55 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 15
    • 79959203326 scopus 로고    scopus 로고
    • Subspace evolution and transfer (SET) for low-rank matrix completion
    • W. Dai, O. Milenkovic, and E. Kerman, Subspace evolution and transfer (SET) for low-rank matrix completion, IEEE Trans. Signal Process., 59 (2011), pp. 3120-3132.
    • (2011) IEEE Trans. Signal Process. , vol.59 , pp. 3120-3132
    • Dai, W.1    Milenkovic, O.2    Kerman, E.3
  • 17
    • 30844437386 scopus 로고    scopus 로고
    • Neighborliness polytopes and sparse solution of underdetermined linear equations
    • Stanford, CA
    • D. L. Donoho, Neighborliness Polytopes and Sparse Solution of Underdetermined Linear Equations, Tech. report, Stanford University, Stanford, CA, 2006.
    • (2006) Tech. Report, Stanford University
    • Donoho, D.L.1
  • 18
    • 77953126052 scopus 로고    scopus 로고
    • Precise undersampling theorems
    • D. L. Donoho and J. Tanner, Precise undersampling theorems, Proc. IEEE, 98 (2010), pp. 913-924.
    • (2010) Proc. IEEE , vol.98 , pp. 913-924
    • Donoho, D.L.1    Tanner, J.2
  • 19
    • 84865634860 scopus 로고    scopus 로고
    • Unicity conditions for low-rank matrix recovery
    • Y. C. Eldar, D. Needell, and Y. Plan, Unicity conditions for low-rank matrix recovery, Appl. Comput. Harmon. Anal., 33 (2012), pp. 309-314.
    • (2012) Appl. Comput. Harmon. Anal. , vol.33 , pp. 309-314
    • Eldar, Y.C.1    Needell, D.2    Plan, Y.3
  • 20
    • 84856034474 scopus 로고    scopus 로고
    • Hard thresholding pursuit: An algorithm for compressive sensing
    • S. Foucart, Hard thresholding pursuit: An algorithm for compressive sensing, SIAM J. Numer. Anal., 49 (2011), pp. 2543-2563.
    • (2011) SIAM J. Numer. Anal. , vol.49 , pp. 2543-2563
    • Foucart, S.1
  • 21
    • 79952483985 scopus 로고    scopus 로고
    • Convergence of fixed-point continuation algorithms for matrix rank minimization
    • D. Goldfarb and S. Ma, Convergence of fixed-point continuation algorithms for matrix rank minimization, Found. Comput. Math., 11 (2011), pp. 183-210.
    • (2011) Found. Comput. Math. , vol.11 , pp. 183-210
    • Goldfarb, D.1    Ma, S.2
  • 22
    • 67349112355 scopus 로고    scopus 로고
    • Rank-constrained solutions to linear matrix equations using power-factorization
    • J. P. Haldar and D. Hernando, Rank-constrained solutions to linear matrix equations using power-factorization, IEEE Trans. Signal Process. Lett., 16 (2009), pp. 584-587.
    • (2009) IEEE Trans. Signal Process. Lett. , vol.16 , pp. 584-587
    • Haldar, J.P.1    Hernando, D.2
  • 23
  • 28
    • 84898600635 scopus 로고    scopus 로고
    • Matrix recipes for hard thresholding methods
    • April, DOI: 10.1007/s10851-013-0434-7
    • A. Kyrillidis and V. Cevher, Matrix recipes for hard thresholding methods, J. Math. Imaging Vision, April (2013), DOI: 10.1007/s10851-013-0434-7.
    • (2013) J. Math. Imaging Vision
    • Kyrillidis, A.1    Cevher, V.2
  • 29
    • 84886851206 scopus 로고    scopus 로고
    • available online from
    • R. M. Larsen, PROPACK available online from http://sun.stanford.edu/ rmunk/PROPACK/.
    • PROPACK
    • Larsen, R.M.1
  • 30
    • 77955747588 scopus 로고    scopus 로고
    • ADMIRA: Atomic decomposition for minimum rank approximation
    • K. Lee and Y. Bresler, ADMiRA: Atomic decomposition for minimum rank approximation, IEEE Trans. Inform. Theory, 56 (2010), pp. 4402-4416.
    • (2010) IEEE Trans. Inform. Theory , vol.56 , pp. 4402-4416
    • Lee, K.1    Bresler, Y.2
  • 31
    • 48549094732 scopus 로고    scopus 로고
    • Alternating projections on manifolds
    • A. S. Lewis and J. Malick, Alternating projections on manifolds, Math. Oper. Res., 33 (2008), pp. 216-234.
    • (2008) Math. Oper. Res. , vol.33 , pp. 216-234
    • Lewis, A.S.1    Malick, J.2
  • 33
    • 79957957723 scopus 로고    scopus 로고
    • Fixed point and bregman iterative methods for matrix rank minimization
    • S. Ma, D. Goldfarb, and L. Chen, Fixed point and Bregman iterative methods for matrix rank minimization, Math. Program. Ser. A, 128 (2011), pp. 321-353.
    • (2011) Math. Program. Ser. A , vol.128 , pp. 321-353
    • Ma, S.1    Goldfarb, D.2    Chen, L.3
  • 34
    • 77949685085 scopus 로고    scopus 로고
    • Optimally tuned iterative reconstruction algorithms for compressed sensing
    • A. Maleki and D. L. Donoho, Optimally tuned iterative reconstruction algorithms for compressed sensing, IEEE J. Selected Topics Signal Process., 4 (2010), pp. 330-341.
    • (2010) IEEE J. Selected Topics Signal Process. , vol.4 , pp. 330-341
    • Maleki, A.1    Donoho, D.L.2
  • 36
    • 84880721205 scopus 로고    scopus 로고
    • Numerical algorithms for low-rank matrix completion problems
    • Switzerland
    • M. Michenkova, Numerical Algorithms for Low-Rank Matrix Completion Problems, Tech. report, ETH, Switzerland, http://www.math.ethz.ch/kressner/ students/michenkova.pdf 2011.
    • (2011) Tech. Report, ETH
    • Michenkova, M.1
  • 37
    • 62749175137 scopus 로고    scopus 로고
    • Cosamp: Iterative signal recovery from incomplete and inaccurate samples
    • D. Needell and J. Tropp, Cosamp: Iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmon. Anal., 26 (2009), pp. 301-321.
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , pp. 301-321
    • Needell, D.1    Tropp, J.2
  • 38
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471-501.
    • (2010) SIAM Rev , vol.52 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.A.3
  • 39
    • 79952759680 scopus 로고    scopus 로고
    • Null space conditions and thresholds for rank minimization
    • B. Recht, W. Xu, and B. Hassibi, Null space conditions and thresholds for rank minimization, Math. Program. Ser. B, (2011), pp. 175-211.
    • (2011) Math. Program. Ser. B , pp. 175-211
    • Recht, B.1    Xu, W.2    Hassibi, B.3
  • 41
    • 78049448383 scopus 로고    scopus 로고
    • An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
    • K. Toh and S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems, Pacific J. Optim., 16 (2010), pp. 615-640.
    • (2010) Pacific J. Optim. , vol.16 , pp. 615-640
    • Toh, K.1    Yun, S.2
  • 43
    • 84886868362 scopus 로고    scopus 로고
    • Low rank matrix completion by riemannian optimization
    • to appear
    • B. Van de reycken, Low rank matrix completion by Riemannian optimization, SIAM J. Optim., to appear.
    • SIAM J. Optim.
    • Van De Reycken, B.1
  • 44
    • 79251469735 scopus 로고    scopus 로고
    • A riemannian optimization approach for computing low-rank solutions of lyapunov equations
    • B. Van de reycken and S. Van de walle, A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2553-2579.
    • (2010) SIAM J. Matrix Anal. Appl. , vol.31 , pp. 2553-2579
    • Van De Reycken, B.1    Van De Walle, S.2
  • 45
    • 84869205493 scopus 로고    scopus 로고
    • Solving a low-rank factorization model for matrix completion by a non-linear successive over-relaxation algorithm
    • Z. Wen, W. Yin, and Y. Zhang, Solving a low-rank factorization model for matrix completion by a non-linear successive over-relaxation algorithm, Math. Program. Comput., 4 (2012), pp. 333-361.
    • (2012) Math. Program. Comput. , vol.4 , pp. 333-361
    • Wen, Z.1    Yin, W.2    Zhang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.