-
1
-
-
34548526602
-
Trust-region methods on riemannian manifolds
-
P.-A. Absil, C. Baker, and K. A. Gallivan, Trust-region methods on Riemannian manifolds, Found. Comput. Math., 7 (2007), pp. 303-330.
-
(2007)
Found. Comput. Math.
, vol.7
, pp. 303-330
-
-
Absil, P.-A.1
Baker, C.2
Gallivan, K.A.3
-
2
-
-
70349256064
-
A geometric Newton method for Oja's vector field
-
P.-A. Absil, M. Ishteva, L. De Lathauwer, and S. Van Huffel, A geometric Newton method for Oja's vector field, Neural Comput., 21 (2009), pp. 1415-1433.
-
(2009)
Neural Comput.
, vol.21
, pp. 1415-1433
-
-
Absil, P.-A.1
Ishteva, M.2
De Lathauwer, L.3
Van Huffel, S.4
-
3
-
-
84884085211
-
-
Princeton University Press, Princeton, NJ
-
P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.
-
(2008)
Optimization Algorithms on Matrix Manifolds
-
-
Absil, P.-A.1
Mahony, R.2
Sepulchre, R.3
-
4
-
-
34047199854
-
Approximation of large-scale dynamical systems
-
Philadelphia
-
A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control 6, SIAM, Philadelphia, 2005.
-
(2005)
Adv. Des. Control 6, SIAM
-
-
Antoulas, A.C.1
-
5
-
-
0037103431
-
On the decay rate of hankel singular values and related issues
-
A. C. Antoulas, D. C. Sorensen, and Y. Zhou, On the decay rate of Hankel singular values and related issues, Systems Control Lett., 46 (2002), pp. 323-342.
-
(2002)
Systems Control Lett.
, vol.46
, pp. 323-342
-
-
Antoulas, A.C.1
Sorensen, D.C.2
Zhou, Y.3
-
7
-
-
84976855597
-
Solution of the matrix equation AX +XB = C
-
R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX +XB = C, Comm. ACM, 15 (1972), pp. 820-826.
-
(1972)
Comm. ACM
, vol.15
, pp. 820-826
-
-
Bartels, R.H.1
Stewart, G.W.2
-
9
-
-
44649172897
-
Efficient numerical solution of the LQR-problem for the heat equation
-
P. Benner and J. Saak, Efficient numerical solution of the LQR-problem for the heat equation, Proc. Appl. Math. Mech., 4 (2004), pp. 648-649.
-
(2004)
Proc. Appl. Math. Mech.
, vol.4
, pp. 648-649
-
-
Benner, P.1
Saak, J.2
-
10
-
-
20044390432
-
Numerical solution of saddle point problems
-
M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1-137.
-
(2005)
Acta Numer.
, vol.14
, pp. 1-137
-
-
Benzi, M.1
Golub, G.H.2
Liesen, J.3
-
11
-
-
0038454070
-
An introduction to differentiable manifolds and riemannian Geometry
-
Academic Press, Orlando
-
W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., Pure Appl. Math. 120, Academic Press, Orlando, 1986.
-
(1986)
2nd Ed., Pure Appl. Math.
, vol.120
-
-
Boothby, W.M.1
-
12
-
-
77149160057
-
HSL MI20: An efficient AMG preconditioner for finite element problems in 3d
-
J. Boyle, M. D. Mihajlovic, and J. A. Scott, HSL MI20: An efficient AMG preconditioner for finite element problems in 3d, Internat. J. Numer. Methods Engrg., 82 (2010), pp. 64-98.
-
(2010)
Internat. J. Numer. Methods Engrg.
, vol.82
, pp. 64-98
-
-
Boyle, J.1
Mihajlovic, M.D.2
Scott, J.A.3
-
13
-
-
1542337156
-
A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization
-
S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization, Math. Program., 95 (2003), pp. 329-357.
-
(2003)
Math. Program.
, vol.95
, pp. 329-357
-
-
Burer, S.1
Monteiro, R.D.C.2
-
14
-
-
38149012697
-
The solution of the matrix equation AXB ?CXD = e and (Y A? DZ,Y C ? BZ) = (E,F)
-
K.-W. E. Chu, The solution of the matrix equation AXB ?CXD = E and (Y A? DZ,Y C ? BZ) = (E,F), Linear Algebra Appl., 93 (1987), pp. 93-105.
-
(1987)
Linear Algebra Appl.
, vol.93
, pp. 93-105
-
-
Chu, K.-W.E.1
-
15
-
-
0032216898
-
The geometry of algorithms with orthogonality constraints
-
A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 303-353.
-
(1999)
SIAM J. Matrix Anal. Appl.
, vol.20
, pp. 303-353
-
-
Edelman, A.1
Arias, T.A.2
Smith, S.T.3
-
16
-
-
0346429871
-
-
Oxford University Press, New York
-
H. Elman, D. Silvester, and A. Wathen, Finite Element and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford University Press, New York, 2005.
-
(2005)
Finite Element Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics
-
-
Elman, H.1
Silvester, D.2
Wathen, A.3
-
18
-
-
10044281868
-
Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation
-
L. Grasedyck, Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation, Numer. Linear Algebra Appl., 11 (2004), pp. 371-389.
-
(2004)
Numer. Linear Algebra Appl.
, vol.11
, pp. 371-389
-
-
Grasedyck, L.1
-
19
-
-
48249104699
-
A multigrid method to solve large scale Sylvester equations
-
L. Grasedyck and W. Hackbusch, A multigrid method to solve large scale Sylvester equations, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 870-894.
-
(2007)
SIAM J. Matrix Anal. Appl.
, vol.29
, pp. 870-894
-
-
Grasedyck, L.1
Hackbusch, W.2
-
20
-
-
0037276767
-
A modified low-rank Smith method for large-scale Lyapunov equations
-
S. Gugercin, D. C. Sorensen, and A. C. Antoulas, A modified low-rank Smith method for large-scale Lyapunov equations, Numer. Algorithms, 32 (2003), pp. 27-55.
-
(2003)
Numer. Algorithms
, vol.32
, pp. 27-55
-
-
Gugercin, S.1
Sorensen, D.C.2
Antoulas, A.C.3
-
22
-
-
58149363968
-
Critical points of matrix least squares distance functions
-
U. Helmke and M. A. Shayman, Critical points of matrix least squares distance functions, Linear Algebra Appl., 215 (1995), pp. 1-19.
-
(1995)
Linear Algebra Appl.
, vol.215
, pp. 1-19
-
-
Helmke, U.1
Shayman, M.A.2
-
24
-
-
0028377922
-
Krylov subspace methods for solving large Lyapunov equations
-
I. M. Jaimoukha and E. M. Kasenally, Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal., 31 (1994), pp. 227-251.
-
(1994)
SIAM J. Numer. Anal.
, vol.31
, pp. 227-251
-
-
Jaimoukha, I.M.1
Kasenally, E.M.2
-
25
-
-
33745469648
-
Projection methods for large Lyapunov matrix equations
-
DOI 10.1016/j.laa.2004.11.004, PII S0024379504004707
-
K. Jbilou and A. J. Riquet, Projection methods for large Lyapunov matrix equations, Linear Algebra Appl., 415 (2006), pp. 344-358. (Pubitemid 44304442)
-
(2006)
Linear Algebra and Its Applications
, vol.415
, Issue.2-3
, pp. 344-358
-
-
Jbilou, K.1
Riquet, A.J.2
-
26
-
-
77956086700
-
Low-rank optimization for semidefinite convex problems
-
M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre, Low-rank optimization for semidefinite convex problems, SIAM J. Optim., 20 (2010), pp. 2327-2351.
-
(2010)
SIAM J. Optim.
, vol.20
, pp. 2327-2351
-
-
Journée, M.1
Bach, F.2
Absil, P.-A.3
Sepulchre, R.4
-
27
-
-
42649097264
-
Dynamical low-rank approximation
-
O. Koch and C. Lubich, Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 434-454.
-
(2007)
SIAM J. Matrix Anal. Appl.
, vol.29
, pp. 434-454
-
-
Koch, O.1
Lubich, C.2
-
28
-
-
77956045829
-
Krylov subspace methods for linear systems with tensor product structure
-
D. Kressner and C. Tobler., Krylov subspace methods for linear systems with tensor product structure, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1688-1714.
-
(2010)
SIAM J. Matrix Anal. Appl.
, vol.31
, pp. 1688-1714
-
-
Kressner, D.1
Tobler., C.2
-
30
-
-
48549094732
-
Alternating projections on manifolds
-
A. S. Lewis and J. Malick, Alternating projections on manifolds, Math. Oper. Res., 33 (2008), pp. 216-234.
-
(2008)
Math. Oper. Res.
, vol.33
, pp. 216-234
-
-
Lewis, A.S.1
Malick, J.2
-
31
-
-
11344287684
-
Low-rank solution of Lyapunov equations
-
J.-R. Li and J. White, Low-rank solution of Lyapunov equations, SIAM Rev., 46 (2004), pp. 693-713.
-
(2004)
SIAM Rev.
, vol.46
, pp. 693-713
-
-
Li, J.-R.1
White, J.2
-
32
-
-
27244447941
-
Newton methods for nonsmooth convex minimization: Connections among U-Lagrangian
-
S. A. Miller and J. Malick, Newton methods for nonsmooth convex minimization: Connections among U-Lagrangian, Riemannian Newton and SQP methods, Math. Program., 104 (2005), pp. 609-633.
-
(2005)
Riemannian Newton and SQP Methods, Math. Program.
, vol.104
, pp. 609-633
-
-
Miller, S.A.1
Malick, J.2
-
33
-
-
0019533482
-
Principal component analysis in linear systems: Controllability, observability, and model reduction
-
B. C. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Trans. Automat. Control, 26 (1981), pp. 17-32.
-
(1981)
IEEE Trans. Automat. Control
, vol.26
, pp. 17-32
-
-
Moore, B.C.1
-
35
-
-
77956051837
-
A parameter free ADI-like method for the numerical solution of large scale lyapunov equations
-
Rice University, Houston, TX
-
R. Nong and D. C. Sorensen, A Parameter Free ADI-like Method for the Numerical Solution of Large Scale Lyapunov Equations, CAAM TR09-16, Computational and Applied Mathematics, Rice University, Houston, TX, 2009.
-
(2009)
CAAM TR09-16, Computational and Applied Mathematics
-
-
Nong, R.1
Sorensen, D.C.2
-
36
-
-
0032342953
-
Numerical solution of generalized Lyapunov equations
-
T. Penzl, Numerical solution of generalized Lyapunov equations, Adv. Comput. Math., 8 (1998), pp. 33-48.
-
(1998)
Adv. Comput. Math.
, vol.8
, pp. 33-48
-
-
Penzl, T.1
-
37
-
-
0033295674
-
A cyclic low-rank smith method for large sparse lyapunov equations
-
T. Penzl, A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 21 (2000), pp. 1401-1418.
-
(2000)
SIAM J. Sci. Comput.
, vol.21
, pp. 1401-1418
-
-
Penzl, T.1
-
38
-
-
0001082478
-
Eigenvalue decay bounds for solutions of lyapunov equations: The symmetric case
-
T. Penzl, Eigenvalue decay bounds for solutions of Lyapunov equations: The symmetric case, Systems Control Lett., 40 (2000), pp. 139-144.
-
(2000)
Systems Control Lett.
, vol.40
, pp. 139-144
-
-
Penzl, T.1
-
39
-
-
0000175612
-
Numerical solution of large lyapunov equations
-
M. A. Kaashoek, J. H. V. Schuppen, and A. C. M. Ran, eds., Birkhäuser Boston, Boston, MA
-
Y. Saad, Numerical solution of large Lyapunov equations, in Signal Processing, Scattering, Operator Theory, and Numerical Methods, M. A. Kaashoek, J. H. V. Schuppen, and A. C. M. Ran, eds., Birkhäuser Boston, Boston, MA, 1990, pp. 503-511.
-
(1990)
Signal Processing, Scattering, Operator Theory, and Numerical Methods
, pp. 503-511
-
-
Saad, Y.1
-
41
-
-
0035796801
-
A variance propagation algorithm for stochastic heat and mass transfer problems in food processes
-
N. Scheerlinck, P. Verboven, J. D. Stigter, J. De Baerdemaeker, J. F. Van Impe, and B. M. Nicolai, A variance propagation algorithm for stochastic heat and mass transfer problems in food processes, Internat. J. Numer. Methods Engrg., 51 (2001), pp. 961-983.
-
(2001)
Internat. J. Numer. Methods Engrg.
, vol.51
, pp. 961-983
-
-
Scheerlinck, N.1
Verboven, P.2
Stigter, J.D.3
De Baerdemaeker, J.4
Van Impe, J.F.5
Nicolai, B.M.6
-
42
-
-
44649084929
-
A new iterative method for solving large-scale Lyapunov matrix equations
-
V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comput., 29 (2007), pp. 1268-1288.
-
(2007)
SIAM J. Sci. Comput.
, vol.29
, pp. 1268-1288
-
-
Simoncini, V.1
-
43
-
-
10044265621
-
Bounds on eigenvalue decay rates and sensitivity of solutions to lyapunov equations
-
Rice University, Houston, TX
-
D. C. Sorensen and Y. Zhou, Bounds on Eigenvalue Decay Rates and Sensitivity of Solutions to Lyapunov Equations, CAAM TR02-07, Computational and Applied Mathematics, Rice University, Houston, TX, 2002.
-
(2002)
CAAM TR02-07, Computational and Applied Mathematics
-
-
Sorensen, D.C.1
Zhou, Y.2
-
44
-
-
0000305846
-
The conjugate gradient method and trust regions in large scale optimization
-
T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAM J. Numer. Anal., 20 (1983), pp. 626-637.
-
(1983)
SIAM J. Numer. Anal.
, vol.20
, pp. 626-637
-
-
Steihaug, T.1
-
46
-
-
0002633896
-
Towards an efficient sparsity exploiting Newton method for minimization
-
Academic Press, London, New York
-
P. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in Sparse Matrices and Their Uses, Academic Press, London, New York, 1981, pp. 57-88.
-
(1981)
Sparse Matrices and Their Uses
, pp. 57-88
-
-
Toint, P.L.1
-
47
-
-
0034320029
-
The ubiquitous kronecker product
-
C. F. Van Loan, The ubiquitous Kronecker product, J. Comput. Appl. Math., 123 (2000), pp. 85-100.
-
(2000)
J. Comput. Appl. Math.
, vol.123
, pp. 85-100
-
-
Van Loan, C.F.1
|