-
1
-
-
77951291046
-
A singular value thresholding algorithm for matrix completion
-
J.F. Cai, E.J. Candès, Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim. 20 (4) (2008) 1956-1982.
-
(2008)
SIAM J. Optim.
, vol.20
, Issue.4
, pp. 1956-1982
-
-
Cai, J.F.1
Candès, E.J.2
Shen, Z.3
-
2
-
-
79952823272
-
Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements
-
E.J. Candès, Y. Plan, Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements, IEEE Trans. Inform. Theory 57 (4) (2010) 2342-2359.
-
(2010)
IEEE Trans. Inform. Theory
, vol.57
, Issue.4
, pp. 2342-2359
-
-
Candès, E.J.1
Plan, Y.2
-
3
-
-
77952741387
-
Matrix completion with noise
-
E.J. Candès, Y. Plan, Matrix completion with noise, Proc. IEEE 98 (6) (2010) 925-936.
-
(2010)
Proc. IEEE
, vol.98
, Issue.6
, pp. 925-936
-
-
Candès, E.J.1
Plan, Y.2
-
4
-
-
71049116435
-
Exact matrix completion via convex optimization
-
E.J. Candès, B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math. 9 (6) (2009) 717-772.
-
(2009)
Found. Comput. Math.
, vol.9
, Issue.6
, pp. 717-772
-
-
Candès, E.J.1
Recht, B.2
-
5
-
-
31744440684
-
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
-
DOI 10.1109/TIT.2005.862083
-
E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete Fourier information, IEEE Trans. Inform. Theory 52 (2) (2006) 489-509. (Pubitemid 43174093)
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.2
, pp. 489-509
-
-
Candes, E.J.1
Romberg, J.2
Tao, T.3
-
6
-
-
78049377813
-
Set: An algorithm for consistent matrix completion, in: Icassp 2010
-
W. Dai, O. Milenkovic, SET: An algorithm for consistent matrix completion, in: ICASSP 2010 IEEE Int. Conf., IEEE, 2010, pp. 3646-3649.
-
(2010)
IEEE Int. Conf., IEEE
, pp. 3646-3649
-
-
Dai, W.1
Milenkovic, O.2
-
7
-
-
79951886985
-
Recovering low-rank matrices from few coefficients in any basis
-
D. Gross, Recovering low-rank matrices from few coefficients in any basis, IEEE Trans. Inform. Theory 57 (3) (2011) 1548-1566.
-
(2011)
IEEE Trans. Inform. Theory
, vol.57
, Issue.3
, pp. 1548-1566
-
-
Gross, D.1
-
8
-
-
77955747588
-
Admira: Atomic decomposition for minimum rank approximation
-
K. Lee, Y. Bresler, Admira: Atomic decomposition for minimum rank approximation, IEEE Trans. Inform. Theory 56 (9) (2010) 4402-4416.
-
(2010)
IEEE Trans. Inform. Theory
, vol.56
, Issue.9
, pp. 4402-4416
-
-
Lee, K.1
Bresler, Y.2
-
9
-
-
0003949354
-
-
Springer, Berlin
-
G.G. Lorentz, M. von Golitschek, Y. Makovoz, Constructive Approximation: Advanced Problems, Springer, Berlin, 1996.
-
(1996)
Constructive Approximation: Advanced Problems
-
-
Lorentz, G.G.1
Von Golitschek, M.2
Makovoz, Y.3
-
10
-
-
79957968988
-
Fixed point and bregman iterative methods for matrix rank minimization
-
S. Ma, D. Goldfarb, L. Chen, Fixed point and Bregman iterative methods for matrix rank minimization, Math. Program. (2009) 1-33.
-
(2009)
Math. Program.
, pp. 1-33
-
-
Ma, S.1
Goldfarb, D.2
Chen, L.3
-
11
-
-
85162034614
-
Guaranteed rank minimization via singular value projection
-
December 2010
-
R. Meka, P. Jain, I.S. Dhillon, Guaranteed rank minimization via singular value projection, in: Proc. Neural Information Processing Systems (NIPS), December 2010, pp. 937-945.
-
Proc. Neural Information Processing Systems (NIPS)
, pp. 937-945
-
-
Meka, R.1
Jain, P.2
Dhillon, I.S.3
-
12
-
-
84858717588
-
A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers
-
S. Negahban, P. Ravikumar, M.J. Wainwright, B. Yu, A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, in: Advances in Neural Information Processing Systems (NIPS), 2009.
-
(2009)
Advances in Neural Information Processing Systems (NIPS
-
-
Negahban, S.1
Ravikumar, P.2
Wainwright, M.J.3
Yu, B.4
-
15
-
-
80055051440
-
-
available at
-
P.A. Parrilo, A.S. Willsky, V. Chandrasekaran, B. Recht, The convex geometry of linear inverse problems, available at http://arxiv.org/abs/1012. 0621, 2010.
-
(2010)
The Convex Geometry of Linear Inverse Problems
-
-
Parrilo, P.A.1
Willsky, A.S.2
Chandrasekaran, V.3
Recht, B.4
-
17
-
-
78549288866
-
Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization
-
B. Recht, M. Fazel, P.A. Parrilo, Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization, SIAM Rev. 52 (3) (2010) 471-501.
-
(2010)
SIAM Rev
, vol.52
, Issue.3
, pp. 471-501
-
-
Recht, B.1
Fazel, M.2
Parrilo, P.A.3
-
18
-
-
84858964759
-
Rank minimization over finite fields: Fundamental limits and coding-theoretic interpretations
-
V.Y.F. Tan, L. Balzano, S.C. Draper, Rank minimization over finite fields: Fundamental limits and coding-theoretic interpretations, IEEE Trans. Inform. Theory 58 (4) (2012) 2018-2039.
-
(2012)
IEEE Trans. Inform. Theory
, vol.58
, Issue.4
, pp. 2018-2039
-
-
Tan, V.Y.F.1
Balzano, L.2
Draper, S.C.3
|