메뉴 건너뛰기




Volumn 14, Issue SUPPL13, 2013, Pages

Breast cancer prediction using genome wide single nucleotide polymorphism data

Author keywords

[No Author keywords available]

Indexed keywords

COPY NUMBER VARIATIONS; FEATURE SELECTION METHODS; GENOME-WIDE ASSOCIATION STUDIES; GENOTYPE FREQUENCIES; HARDY-WEINBERG EQUILIBRIUM; POPULATION STRATIFICATION; RANDOM PERMUTATION TESTS; SINGLE NUCLEOTIDE POLYMORPHISMS;

EID: 84886782602     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-14-S13-S3     Document Type: Article
Times cited : (26)

References (48)
  • 1
    • 79952284127 scopus 로고    scopus 로고
    • The hallmarks of cancer: the next generation
    • Hanahan D, Weinberg RA. The hallmarks of cancer: the next generation. Cell 2011, 144(5):646-674.
    • (2011) Cell , vol.144 , Issue.5 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 2
    • 54049135383 scopus 로고    scopus 로고
    • Contemplating effects of genomic structural variation
    • Buchanan JA, Scherer SW. Contemplating effects of genomic structural variation. Genet Med 2008, 10:639-647.
    • (2008) Genet Med , vol.10 , pp. 639-647
    • Buchanan, J.A.1    Scherer, S.W.2
  • 3
    • 77954407332 scopus 로고    scopus 로고
    • Genomewide association studies and assessment of the risk of disease
    • Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med 2010, 363:166-76.
    • (2010) N Engl J Med , vol.363 , pp. 166-176
    • Manolio, T.A.1
  • 8
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Informatics 2006, 2:59-78.
    • (2006) Cancer Informatics , vol.2 , pp. 59-78
    • Cruz, J.A.1    Wishart, D.S.2
  • 9
    • 0036796369 scopus 로고    scopus 로고
    • Current methods of gene prediction, their strengths and weaknesses
    • 140543, 12364589
    • Mathé C, Sagot M-F, Schiex T, Rouzé P. Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res 2002, 30:4103-4117. 140543, 12364589.
    • (2002) Nucleic Acids Res , vol.30 , pp. 4103-4117
    • Mathé, C.1    Sagot, M.-F.2    Schiex, T.3    Rouzé, P.4
  • 10
    • 12344325673 scopus 로고    scopus 로고
    • Training HMM structure with genetic algorithm for biological sequence analysis
    • Won K, Prugel-Bennett A, Krogh A. Training HMM structure with genetic algorithm for biological sequence analysis. Bioinformatics 2004, 20(18):3613-3619.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3613-3619
    • Won, K.1    Prugel-Bennett, A.2    Krogh, A.3
  • 11
    • 0027199670 scopus 로고
    • Protein secondary structure prediction using nearest-neighbor methods
    • Yi TM, Lander ES. Protein secondary structure prediction using nearest-neighbor methods. J Mol Biology 1993, 232:1117-1129.
    • (1993) J Mol Biology , vol.232 , pp. 1117-1129
    • Yi, T.M.1    Lander, E.S.2
  • 12
    • 44449145580 scopus 로고    scopus 로고
    • A comparative study of different machine learning methods on microarray gene expression data
    • 2559877, 18831778
    • Pirooznia M, Yang JY, Yang MQ, Deng Y. A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics 2008, 9(Suppl 1):S13. 2559877, 18831778.
    • (2008) BMC Genomics , vol.9 , Issue.SUPPL 1
    • Pirooznia, M.1    Yang, J.Y.2    Yang, M.Q.3    Deng, Y.4
  • 14
    • 33947307025 scopus 로고    scopus 로고
    • Recognition of protein/gene names from text using an ensemble of classifiers
    • 1866378, 16351756
    • Zhou GD, Shen D, Zhang J, Su J, Tan SH. Recognition of protein/gene names from text using an ensemble of classifiers. BMC Bioinformatics 2005, 6(Suppl 1):S7. 1866378, 16351756.
    • (2005) BMC Bioinformatics , vol.6 , Issue.SUPPL 1
    • Zhou, G.D.1    Shen, D.2    Zhang, J.3    Su, J.4    Tan, S.H.5
  • 16
    • 77951097424 scopus 로고    scopus 로고
    • Identification of type 2 diabetes-associated combination of SNPs using support vector machine
    • 2875201, 20416077
    • Ban HJ, Heo JY, Oh KS, Park KJ. Identification of type 2 diabetes-associated combination of SNPs using support vector machine. BMC Genetics 2010, 11:26. 2875201, 20416077.
    • (2010) BMC Genetics , vol.11 , pp. 26
    • Ban, H.J.1    Heo, J.Y.2    Oh, K.S.3    Park, K.J.4
  • 18
    • 33748691357 scopus 로고    scopus 로고
    • Assessing breast cancer risk: evolution of the Gail Model
    • Bondy ML, Newman LA. Assessing breast cancer risk: evolution of the Gail Model. J Natl Cancer Inst 2006, 98(17):1172-1173.
    • (2006) J Natl Cancer Inst , vol.98 , Issue.17 , pp. 1172-1173
    • Bondy, M.L.1    Newman, L.A.2
  • 19
    • 33845645979 scopus 로고    scopus 로고
    • Gail model for prediction of absolute risk of invasive breast cancer: independent evaluation in the Florence-European Prospective Investigation Into Cancer and Nutrition cohort
    • Decarli A, Calza S, Masala G, Specchia C, Palli D, Gail MH. Gail model for prediction of absolute risk of invasive breast cancer: independent evaluation in the Florence-European Prospective Investigation Into Cancer and Nutrition cohort. J Natl Cancer Inst 2006, 98(23):1686-1689.
    • (2006) J Natl Cancer Inst , vol.98 , Issue.23 , pp. 1686-1689
    • Decarli, A.1    Calza, S.2    Masala, G.3    Specchia, C.4    Palli, D.5    Gail, M.H.6
  • 20
    • 78149313087 scopus 로고    scopus 로고
    • Assessment of Clinical Validity of a Breast Cancer Risk Model Combining Genetic and Clinical Information
    • 2970578, 20956782
    • Mealiffe ME, Stokowski RP, Rhees BK, Prentice RL, Pettinger M, Hinds DA. Assessment of Clinical Validity of a Breast Cancer Risk Model Combining Genetic and Clinical Information. J Natl Cancer Inst 2010, 102(21):1618-1627. 2970578, 20956782.
    • (2010) J Natl Cancer Inst , vol.102 , Issue.21 , pp. 1618-1627
    • Mealiffe, M.E.1    Stokowski, R.P.2    Rhees, B.K.3    Prentice, R.L.4    Pettinger, M.5    Hinds, D.A.6
  • 22
    • 80054861987 scopus 로고    scopus 로고
    • Potential novel candidate polymorphisms identified in genome-wide association study for breast cancer susceptibility
    • 3178778, 21424380
    • Sehrawat B, Sridharan M, Ghosh S, Robson P, Cass CE, Mackey J, Greiner R, Damaraju S. Potential novel candidate polymorphisms identified in genome-wide association study for breast cancer susceptibility. Human Genetics 2011, 130(4):529-537. 3178778, 21424380.
    • (2011) Human Genetics , vol.130 , Issue.4 , pp. 529-537
    • Sehrawat, B.1    Sridharan, M.2    Ghosh, S.3    Robson, P.4    Cass, C.E.5    Mackey, J.6    Greiner, R.7    Damaraju, S.8
  • 25
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 26
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans Inform Theory 1967, IT-13:21-27.
    • (1967) IEEE Trans Inform Theory , vol.IT13 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 27
    • 48249114165 scopus 로고    scopus 로고
    • Evaluating microarray based classifiers: an overview
    • 2623308, 19259405
    • Boulesteix AL, Strobl C, Augustin T, Daumer M. Evaluating microarray based classifiers: an overview. Cancer Informatics 2008, 6:77-97. 2623308, 19259405.
    • (2008) Cancer Informatics , vol.6 , pp. 77-97
    • Boulesteix, A.L.1    Strobl, C.2    Augustin, T.3    Daumer, M.4
  • 29
    • 58749086251 scopus 로고    scopus 로고
    • Mistakes in validating the accuracy of a prediction classifier in high-dimensional but small-sample microarray data
    • Lee S. Mistakes in validating the accuracy of a prediction classifier in high-dimensional but small-sample microarray data. Stat Methods Med Res 2008, 17:635-642.
    • (2008) Stat Methods Med Res , vol.17 , pp. 635-642
    • Lee, S.1
  • 33
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan JR. Induction of decision trees. Machine Learning 1986, 1:81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 44
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto Encyclopedia of Genes and Genomes
    • Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000, (28):27-30.
    • (2000) Nucleic Acids Res , Issue.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 45
    • 38549158538 scopus 로고    scopus 로고
    • F-SNP: computationally predicted functional SNPs for disease association studies
    • Lee PH, Shatkay H. F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res 2008, (36):820-824.
    • (2008) Nucleic Acids Res , Issue.36 , pp. 820-824
    • Lee, P.H.1    Shatkay, H.2
  • 46
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8:118-127.
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 47
    • 42449097765 scopus 로고    scopus 로고
    • Reasons for breast cancer heterogeneity
    • 2263121, 18304379
    • Bertucci F, Birnbaum D. Reasons for breast cancer heterogeneity. J Biol 2008, 7(2):6. 2263121, 18304379.
    • (2008) J Biol , vol.7 , Issue.2 , pp. 6
    • Bertucci, F.1    Birnbaum, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.