메뉴 건너뛰기




Volumn 36, Issue 4, 2013, Pages 1083-1097

Infinitely many solutions for a class of fractional boundary value problem

Author keywords

Boundary value problem; Critical point theory; Fractional differential equations; Variational methods

Indexed keywords


EID: 84886781358     PISSN: 01266705     EISSN: 21804206     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (22)

References (33)
  • 1
    • 77949264980 scopus 로고    scopus 로고
    • A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
    • R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010), no. 3, 973-1033.
    • (2010) Acta Appl. Math. , vol.109 , Issue.3 , pp. 973-1033
    • Agarwal, R.P.1    Benchohra, M.2    Hamani, S.3
  • 2
    • 70349131961 scopus 로고    scopus 로고
    • Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions
    • B. Ahmad and J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl. 58 (2009), 1838-1843.
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1838-1843
    • Ahmad, B.1    Nieto, J.J.2
  • 3
    • 34548350707 scopus 로고
    • Dual variational methods in critical point theory and applications
    • A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381.
    • (1973) J. Functional Analysis , vol.14 , pp. 349-381
    • Ambrosetti, A.1    Rabinowitz, P.H.2
  • 4
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), no. 2, 495-505.
    • (2005) J. Math. Anal. Appl. , vol.311 , Issue.2 , pp. 495-505
    • Bai, Z.1    Lü, H.2
  • 5
    • 77957376783 scopus 로고    scopus 로고
    • The existence of solutions for a fractional multi-point boundary value problem
    • Z. Bai and Y. Zhang, The existence of solutions for a fractional multi-point boundary value problem, Comput. Math. Appl. 60 (2010), no. 8, 2364-2372.
    • (2010) Comput. Math. Appl. , vol.60 , Issue.8 , pp. 2364-2372
    • Bai, Z.1    Zhang, Y.2
  • 6
    • 0001594538 scopus 로고
    • Infinitely many solutions of a symmetric Dirichlet problem
    • T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal. 20 (1993), no. 10, 1205-1216.
    • (1993) Nonlinear Anal. , vol.20 , Issue.10 , pp. 1205-1216
    • Bartsch, T.1
  • 7
    • 84966205441 scopus 로고
    • On an elliptic equation with concave and convex nonlinearities
    • T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc. 123 (1995), no. 11, 3555-3561.
    • (1995) Proc. Amer. Math. Soc. , vol.123 , Issue.11 , pp. 3555-3561
    • Bartsch, T.1    Willem, M.2
  • 8
    • 0034032484 scopus 로고    scopus 로고
    • Application of a fractional advection-dispersion equation
    • D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res. 36 (2000) 1403-1412.
    • (2000) Water Resour. Res. , vol.36 , pp. 1403-1412
    • Benson, D.A.1    Wheatcraft, S.W.2    Meerschaert, M.M.3
  • 9
    • 84990613834 scopus 로고
    • Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
    • H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477.
    • (1983) Comm. Pure Appl. Math. , vol.36 , Issue.4 , pp. 437-477
    • Brézis, H.1    Nirenberg, L.2
  • 10
    • 76549085102 scopus 로고    scopus 로고
    • Doubly resonant semilinear elliptic problems via nonsmooth critical point theory
    • J.-N. Corvellec, V. V. Motreanu and C. Saccon, Doubly resonant semilinear elliptic problems via nonsmooth critical point theory, J. Differential Equations 248 (2010), no. 8, 2064-2091.
    • (2010) J. Differential Equations , vol.248 , Issue.8 , pp. 2064-2091
    • Corvellec, J.-N.1    Motreanu, V.V.2    Saccon, C.3
  • 11
    • 33646262074 scopus 로고    scopus 로고
    • Variational formulation for the stationary fractional advection dispersion equation
    • V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations 22 (2006), no. 3, 558-576.
    • (2006) Numer. Methods Partial Differential Equations , vol.22 , Issue.3 , pp. 558-576
    • Ervin, V.J.1    Roop, J.P.2
  • 12
    • 4544317880 scopus 로고    scopus 로고
    • Existence and multiplicity of solutions for p(x)-Laplacian equations in RN
    • X. Fan and X. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in RN, Nonlinear Anal. 59 (2004), no. 1-2, 173-188.
    • (2004) Nonlinear Anal. , vol.59 , Issue.1-2 , pp. 173-188
    • Fan, X.1    Han, X.2
  • 13
    • 14644446063 scopus 로고    scopus 로고
    • Least squares finite-element solution of a fractional order two-point boundary value problem
    • G. J. Fix and J. P. Roop, Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl. 48 (2004), no. 7-8, 1017-1033.
    • (2004) Comput. Math. Appl. , vol.48 , Issue.7-8 , pp. 1017-1033
    • Fix, G.J.1    Roop, J.P.2
  • 14
    • 0002847893 scopus 로고    scopus 로고
    • Fractional calculus: Integral and differential equations of fractional order
    • in (Udine), CISM Courses and Lectures, 378 Springer, Vienna
    • R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in Fractals and fractional calculus in continuum mechanics (Udine, 1996), 223-276, CISM Courses and Lectures, 378 Springer, Vienna.
    • (1996) Fractals and fractional calculus in continuum mechanics , pp. 223-276
    • Gorenflo, R.1    Mainardi, F.2
  • 15
    • 78651353033 scopus 로고    scopus 로고
    • The existence of solutions to boundary value problems of fractional differential equations at resonance
    • W. Jiang, The existence of solutions to boundary value problems of fractional differential equations at resonance, Nonlinear Anal. 74 (2011), no. 5, 1987-1994.
    • (2011) Nonlinear Anal. , vol.74 , Issue.5 , pp. 1987-1994
    • Jiang, W.1
  • 16
    • 79960993100 scopus 로고    scopus 로고
    • Existence of solutions for a class of fractional boundary value problems via critical point theory
    • F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl. 62 (2011), no. 3, 1181-1199.
    • (2011) Comput. Math. Appl. , vol.62 , Issue.3 , pp. 1181-1199
    • Jiao, F.1    Zhou, Y.2
  • 18
    • 68349091496 scopus 로고    scopus 로고
    • Positive solutions for boundary value problems of nonlinear fractional differential equation
    • S. Liang and J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal. 71 (2009), no. 11, 5545-5550.
    • (2009) Nonlinear Anal. , vol.71 , Issue.11 , pp. 5545-5550
    • Liang, S.1    Zhang, J.2
  • 19
    • 27644579558 scopus 로고    scopus 로고
    • Existence of solutions to a class of nonlinear second order two-point boundary value problems
    • F. Li, Z. Liang and Q. Zhang, Existence of solutions to a class of nonlinear second order two-point boundary value problems, J. Math. Anal. Appl. 312 (2005), no. 1, 357-373.
    • (2005) J. Math. Anal. Appl. , vol.312 , Issue.1 , pp. 357-373
    • Li, F.1    Liang, Z.2    Zhang, Q.3
  • 20
    • 0003345272 scopus 로고
    • Critical point theory and Hamiltonian systems
    • Springer, New York
    • J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, 74, Springer, New York, 1989.
    • (1989) Applied Mathematical Sciences , pp. 74
    • Mawhin, J.1    Willem, M.2
  • 22
    • 0005785901 scopus 로고
    • Variational methods in nonlinear problems
    • in (Montecatini Terme), Lecture Notes in Math., 1365 Springer, Berlin
    • L. Nirenberg, Variational methods in nonlinear problems, in Topics in calculus of variations (Montecatini Terme, 1987), 100-119, Lecture Notes in Math., 1365 Springer, Berlin.
    • (1987) Topics in calculus of variations , pp. 100-119
    • Nirenberg, L.1
  • 23
    • 0003244044 scopus 로고    scopus 로고
    • Fractional differential equations
    • Academic Press, San Diego, CA
    • I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999.
    • (1999) Mathematics in Science and Engineering , pp. 198
    • Podlubny, I.1
  • 24
    • 0001901435 scopus 로고
    • Minimax methods in critical point theory with applications to differential equations
    • Published for the Conference Board of the Mathematical Sciences, Washington, DC
    • P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986.
    • (1986) CBMS Regional Conference Series in Mathematics , pp. 65
    • Rabinowitz, P.H.1
  • 27
    • 73549093365 scopus 로고    scopus 로고
    • Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems
    • C.-L. Tang and X.-P. Wu, Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems, J. Differential Equations 248 (2010), no. 4, 660-692.
    • (2010) J. Differential Equations , vol.248 , Issue.4 , pp. 660-692
    • Tang, C.-L.1    Wu, X.-P.2
  • 28
    • 77958009389 scopus 로고    scopus 로고
    • A class of fractional evolution equations and optimal controls
    • J. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl. 12 (2011), no. 1, 262-272.
    • (2011) Nonlinear Anal. Real World Appl. , vol.12 , Issue.1 , pp. 262-272
    • Wang, J.1    Zhou, Y.2
  • 30
    • 33748915280 scopus 로고    scopus 로고
    • Existence of solution for a boundary value problem of fractional order
    • S. Zhang, Existence of solution for a boundary value problem of fractional order, Acta Math. Sci. Ser. B Engl. Ed. 26 (2006), no. 2, 220-228.
    • (2006) Acta Math. Sci. Ser. B Engl. Ed. , vol.26 , Issue.2 , pp. 220-228
    • Zhang, S.1
  • 31
    • 79651473557 scopus 로고    scopus 로고
    • Existence of a solution for the fractional differential equation with nonlinear boundary conditions
    • S. Zhang, Existence of a solution for the fractional differential equation with nonlinear boundary conditions, Comput. Math. Appl. 61 (2011), no. 4, 1202-1208.
    • (2011) Comput. Math. Appl. , vol.61 , Issue.4 , pp. 1202-1208
    • Zhang, S.1
  • 32
    • 79958200206 scopus 로고    scopus 로고
    • Infinitely many periodic solutions for second order Hamiltonian systems
    • Q. Zhang and C. Liu, Infinitely many periodic solutions for second order Hamiltonian systems, J. Differential Equations 251 (2011), no. 4-5, 816-833.
    • (2011) J. Differential Equations , vol.251 , Issue.4-5 , pp. 816-833
    • Zhang, Q.1    Liu, C.2
  • 33
    • 67349177003 scopus 로고    scopus 로고
    • Existence and uniqueness for fractional neutral differential equations with infinite delay
    • Y. Zhou, F. Jiao and J. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal. 71 (2009), no. 7-8, 3249-3256.
    • (2009) Nonlinear Anal. , vol.71 , Issue.7-8 , pp. 3249-3256
    • Zhou, Y.1    Jiao, F.2    Li, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.