메뉴 건너뛰기




Volumn 8189 LNAI, Issue PART 2, 2013, Pages 177-193

Minimal shrinkage for noisy data recovery using Schatten-p norm objective

Author keywords

[No Author keywords available]

Indexed keywords

COLLABORATIVE PREDICTIONS; NOISY DATA; NOISY DATASETS; OPTIMAL SOLUTIONS; RANK CONSTRAINTS; SHRINKAGE MODEL; SINGULAR VALUES; TRACE-NORMS;

EID: 84886493829     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-40991-2_12     Document Type: Conference Paper
Times cited : (19)

References (29)
  • 1
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • Cai, J., Candès, E., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization 20, 1956-1982 (2010)
    • (2010) SIAM Journal on Optimization , vol.20 , pp. 1956-1982
    • Cai, J.1    Candès, E.2    Shen, Z.3
  • 2
    • 84863765049 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Candès, E., Recht, B.: Exact matrix completion via convex optimization. Communications of the ACM 55, 111-119 (2012)
    • (2012) Communications of the ACM , vol.55 , pp. 111-119
    • Candès, E.1    Recht, B.2
  • 3
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review 52, 471-501 (2010)
    • (2010) SIAM Review , vol.52 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.3
  • 4
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • Rennie, J.M., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: ICML, pp. 713-719 (2005)
    • (2005) ICML , pp. 713-719
    • Rennie, J.M.1    Srebro, N.2
  • 6
    • 85100063855 scopus 로고    scopus 로고
    • Tensor completion for estimating missing values in visual data
    • Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. In: ICCV, pp. 2114-2121 (2009)
    • (2009) ICCV , pp. 2114-2121
    • Liu, J.1    Musialski, P.2    Wonka, P.3    Ye, J.4
  • 9
    • 33749255817 scopus 로고    scopus 로고
    • 1-norm principal component analysis for robust subspace factorization
    • 1-norm principal component analysis for robust subspace factorization. In: ICML, pp. 281-288 (2006)
    • (2006) ICML , pp. 281-288
    • Ding, C.H.Q.1    Zhou, D.2    He, X.3    Zha, H.4
  • 10
    • 84863367863 scopus 로고    scopus 로고
    • Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
    • Wright, J., Ganesh, A., Rao, S., Peng, Y.,Ma, Y.: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In: NIPS (2009)
    • (2009) NIPS
    • Wright, J.1    Ganesh, A.2    Rao, S.3    Peng, Y.4    Ma, Y.5
  • 11
    • 77956007151 scopus 로고    scopus 로고
    • Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images
    • Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images. In: CVPR, pp. 763-770 (2010)
    • (2010) CVPR , pp. 763-770
    • Peng, Y.1    Ganesh, A.2    Wright, J.3    Xu, W.4    Ma, Y.5
  • 13
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • Candès, E., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Transactions on Information Theory 56, 2053-2080 (2010)
    • (2010) IEEE Transactions on Information Theory , vol.56 , pp. 2053-2080
    • Candès, E.1    Tao, T.2
  • 15
    • 79957957723 scopus 로고    scopus 로고
    • Fixed point and bregman iterative methods for matrix rank minimization
    • Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Mathematical Programming: Series A and B 128, 321-353 (2011)
    • (2011) Mathematical Programming: Series A and B , vol.128 , pp. 321-353
    • Ma, S.1    Goldfarb, D.2    Chen, L.3
  • 16
    • 78049448383 scopus 로고    scopus 로고
    • An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems
    • Toh, K., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pacific Journal of Optimization (2010)
    • (2010) Pacific Journal of Optimization
    • Toh, K.1    Yun, S.2
  • 17
    • 79251515185 scopus 로고    scopus 로고
    • Trace norm regularization: Reformulations, algorithms, and multi-task learning
    • Pong, T., Tseng, P., Ji, S., Ye, J.: Trace norm regularization: Reformulations, algorithms, and multi-task learning. SIAM Journal on Optimization 20, 3465-3489 (2010)
    • (2010) SIAM Journal on Optimization , vol.20 , pp. 3465-3489
    • Pong, T.1    Tseng, P.2    Ji, S.3    Ye, J.4
  • 18
    • 33747738463 scopus 로고
    • Singular value decomposition and least squares solutions
    • Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numerische Mathematik 14, 403-420 (1970)
    • (1970) Numerische Mathematik , vol.14 , pp. 403-420
    • Golub, G.H.1    Reinsch, C.2
  • 19
    • 77955690054 scopus 로고    scopus 로고
    • The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices
    • UILU-ENG-09-2214
    • Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. In: UIUC Tech. Rep., UILU-ENG-09-2214 (2010)
    • (2010) UIUC Tech. Rep.
    • Lin, Z.1    Chen, M.2    Ma, Y.3
  • 21
    • 85194972808 scopus 로고
    • Regression shrinkage and selection via the lasso
    • Series B
    • Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58, 267-288 (1994)
    • (1994) Journal of the Royal Statistical Society , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 22
    • 85162007328 scopus 로고    scopus 로고
    • A spectral regularization framework for multi-task structure learning
    • Argyriou, A., Micchelli, C., Pontil, M., Ying, Y.: A spectral regularization framework for multi-task structure learning. In: NIPS (2007)
    • (2007) NIPS
    • Argyriou, A.1    Micchelli, C.2    Pontil, M.3    Ying, Y.4
  • 23
    • 85162034614 scopus 로고    scopus 로고
    • Guaranteed rank minimization via singular value projection
    • Jain, P., Meka, R., Dhillon, I.: Guaranteed rank minimization via singular value projection. In: NIPS (2010)
    • (2010) NIPS
    • Jain, P.1    Meka, R.2    Dhillon, I.3
  • 27
    • 84886046670 scopus 로고    scopus 로고
    • Non-convex rank minimization via an empirical bayesian approach
    • Wipf, D.: Non-convex rank minimization via an empirical bayesian approach. In: UAI, pp. 914-923 (2012)
    • (2012) UAI , pp. 914-923
    • Wipf, D.1
  • 28
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. PAMI, 643-660 (2001)
    • (2001) PAMI , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.