메뉴 건너뛰기




Volumn 8189 LNAI, Issue PART 2, 2013, Pages 643-659

Hub co-occurrence modeling for robust high-dimensional kNN classification

Author keywords

Bayesian; classification; co occurrences; curse of dimensionality; hubs; k nearest neighbor

Indexed keywords

BAYESIAN; CO-OCCURRENCES; CURSE OF DIMENSIONALITY; HUBS; K-NEAREST NEIGHBORS;

EID: 84886474792     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-40991-2_41     Document Type: Conference Paper
Times cited : (10)

References (36)
  • 4
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207-244 (2009)
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 5
    • 33947681316 scopus 로고    scopus 로고
    • Ml-knn: A lazy learning approach to multi-label learning
    • Ling Zhang, M., Hua Zhou, Z.: Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition 40, 2007 (2007)
    • (2007) Pattern Recognition , vol.40 , pp. 2007
    • Ling Zhang, M.1    Hua Zhou, Z.2
  • 6
    • 38049045180 scopus 로고    scopus 로고
    • Adaptive k-nearest neighbor classification based on a dynamic number of nearest neighbors
    • Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. Springer, Heidelberg
    • Ougiaroglou, S., Nanopoulos, A., Papadopoulos, A.N., Manolopoulos, Y., Welzer-Druzovec, T.: Adaptive k-nearest neighbor classification based on a dynamic number of nearest neighbors. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690, pp. 66-82. Springer, Heidelberg (2007)
    • (2007) LNCS , vol.4690 , pp. 66-82
    • Ougiaroglou, S.1    Nanopoulos, A.2    Papadopoulos, A.N.3    Manolopoulos, Y.4    Welzer-Druzovec, T.5
  • 8
    • 0002448383 scopus 로고
    • Concept learning and the problem of small disjuncts
    • Morgan Kaufmann Publishers Inc.
    • Holte, R.C., Acker, L.E., Porter, B.W.: Concept learning and the problem of small disjuncts. In: Proc. 11th Int. Conf. AI, vol. 1, pp. 813-818. Morgan Kaufmann Publishers Inc. (1989)
    • (1989) Proc. 11th Int. Conf. AI , vol.1 , pp. 813-818
    • Holte, R.C.1    Acker, L.E.2    Porter, B.W.3
  • 11
    • 51949090223 scopus 로고    scopus 로고
    • Defense of Nearest-Neighbor Based Image Classification
    • Boiman, O., Shechtman, E., Irani, M.: In Defense of Nearest-Neighbor Based Image Classification. In: CVPR (2008)
    • (2008) CVPR
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 20
    • 84886480525 scopus 로고    scopus 로고
    • Hubness-aware shared neighbor distances for high-dimensional k-nearest neighbor classification
    • Tomašev, N., Mladenić, D.: Hubness-aware shared neighbor distances for high-dimensional k-nearest neighbor classification. Knowledge and Information Systems, 1-34 (2013)
    • (2013) Knowledge and Information Systems , pp. 1-34
    • Tomašev, N.1    Mladenić, D.2
  • 22
    • 80052314494 scopus 로고    scopus 로고
    • Hubness-based fuzzy measures for high-dimensional k-nearest neighbor classification
    • Perner, P. (ed.) MLDM 2011. Springer, Heidelberg
    • Tomašev, N., Radovanović, M., Mladenić, D., Ivanović, M.: Hubness-based fuzzy measures for high-dimensional k-nearest neighbor classification. In: Perner, P. (ed.) MLDM 2011. LNCS (LNAI), vol. 6871, pp. 16-30. Springer, Heidelberg (2011)
    • (2011) LNCS (LNAI) , vol.6871 , pp. 16-30
    • Tomašev, N.1    Radovanović, M.2    Mladenić, D.3    Ivanović, M.4
  • 24
    • 84857152681 scopus 로고    scopus 로고
    • Nearest neighbor voting in high-dimensional data: Learning from past occurrences
    • Tomašev, N., Mladenić, D.: Nearest neighbor voting in high-dimensional data: Learning from past occurrences. In: ICDM PhD Forum (2011)
    • ICDM PhD Forum (2011)
    • Tomašev, N.1    Mladenić, D.2
  • 25
    • 84865237950 scopus 로고    scopus 로고
    • Nearest neighbor voting in high dimensional data: Learning from past occurrences
    • Tomašev, N., Mladenić, D.: Nearest neighbor voting in high dimensional data: Learning from past occurrences. Computer Science and Information Systems 9, 691-712 (2012)
    • (2012) Computer Science and Information Systems , vol.9 , pp. 691-712
    • Tomašev, N.1    Mladenić, D.2
  • 26
    • 84873421776 scopus 로고    scopus 로고
    • Using mutual proximity to improve content-based audio similarity
    • Schnitzer, D., Flexer, A., Schedl, M., Widmer, G.: Using mutual proximity to improve content-based audio similarity. In: ISMIR 2011, pp. 79-84 (2011)
    • (2011) ISMIR 2011 , pp. 79-84
    • Schnitzer, D.1    Flexer, A.2    Schedl, M.3    Widmer, G.4
  • 27
    • 84858810298 scopus 로고    scopus 로고
    • Hubness-aware shared neighbor distances for high-dimensional k-nearest neighbor classification
    • Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. Springer, Heidelberg
    • Tomašev, N., Mladenić, D.: Hubness-aware shared neighbor distances for high-dimensional k-nearest neighbor classification. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 116-127. Springer, Heidelberg (2012)
    • (2012) LNCS , vol.7209 , pp. 116-127
    • Tomašev, N.1    Mladenić, D.2
  • 28
    • 79957951698 scopus 로고    scopus 로고
    • The role of hubness in clustering high-dimensional data
    • Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part I. Springer, Heidelberg
    • Tomašev, N., Radovanović, M., Mladenić, D., Ivanović, M.: The role of hubness in clustering high-dimensional data. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part I. LNCS (LNAI), vol. 6634, pp. 183-195. Springer, Heidelberg (2011)
    • (2011) LNCS (LNAI) , vol.6634 , pp. 183-195
    • Tomašev, N.1    Radovanović, M.2    Mladenić, D.3    Ivanović, M.4
  • 34
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91 (2004)
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91
    • Lowe, D.G.1
  • 36
    • 84858834586 scopus 로고    scopus 로고
    • Identification of different types of minority class examples in imbalanced data
    • Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. Springer, Heidelberg
    • Napierala, K., Stefanowski, J.: Identification of different types of minority class examples in imbalanced data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 139-150. Springer, Heidelberg (2012)
    • (2012) LNCS , vol.7209 , pp. 139-150
    • Napierala, K.1    Stefanowski, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.