메뉴 건너뛰기




Volumn 7209 LNAI, Issue PART 2, 2012, Pages 116-127

Hubness-aware shared neighbor distances for high-dimensional k-nearest neighbor classification

Author keywords

curse of dimensionality; Hubness; shared neighbor distances

Indexed keywords

CURSE OF DIMENSIONALITY; DISTANCE-BASED METHODS; EXTRA COMPUTATIONS; HIGH DIMENSIONAL DATA; HIGH DIMENSIONAL SPACES; HIGH-DIMENSIONAL; HUBNESS; K-NEAREST NEIGHBOR CLASSIFICATION; K-NEAREST NEIGHBORS; SHARED NEIGHBOR DISTANCES;

EID: 84858810298     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-28931-6_12     Document Type: Conference Paper
Times cited : (5)

References (31)
  • 4
    • 67649105393 scopus 로고    scopus 로고
    • When is 'nearest neighbour' meaningful: A converse theorem and implications
    • Durrant, R.J., Kabán, A.: When is 'nearest neighbour' meaningful: A converse theorem and implications. Journal of Complexity 25(4), 385-397 (2009)
    • (2009) Journal of Complexity , vol.25 , Issue.4 , pp. 385-397
    • Durrant, R.J.1    Kabán, A.2
  • 10
    • 0015680655 scopus 로고
    • Clustering using a similarity measure based on shared near neighbors
    • Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE Trans. Comput. 22, 1025-1034 (1973)
    • (1973) IEEE Trans. Comput. , vol.22 , pp. 1025-1034
    • Jarvis, R.A.1    Patrick, E.A.2
  • 14
    • 77955045250 scopus 로고    scopus 로고
    • Can Shared-Neighbor Distances Defeat the Curse of Dimensionality?
    • Gertz,M., Ludäscher, B. (eds.) SSDBM2010. Springer, Heidelberg
    • Houle, M.E., Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Can Shared-Neighbor Distances Defeat the Curse of Dimensionality? In: Gertz,M., Ludäscher, B. (eds.) SSDBM2010. LNCS, vol. 6187, pp. 482-500. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.6187 , pp. 482-500
    • Houle, M.E.1    Kriegel, H.-P.2    Kröger, P.3    Schubert, E.4    Zimek, A.5
  • 15
    • 0000608834 scopus 로고    scopus 로고
    • Density-based indexing for approximate nearest-neighbor queries
    • ACM Press
    • Bennett, K.P., Fayyad, U., Geiger, D.: Density-based indexing for approximate nearest-neighbor queries. In: ACM SIGKDD Conference Proceedings, pp. 233-243. ACM Press (1999)
    • (1999) ACM SIGKDD Conference Proceedings , pp. 233-243
    • Bennett, K.P.1    Fayyad, U.2    Geiger, D.3
  • 16
    • 35248893423 scopus 로고    scopus 로고
    • Finding Natural Clusters using Multi-Clusterer Combiner Based on Shared Nearest Neighbors
    • Windeatt, T., Roli, F. (eds.) MCS 2003. Springer, Heidelberg
    • Ayad, H., Kamel, M.: Finding Natural Clusters using Multi-Clusterer Combiner Based on Shared Nearest Neighbors. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 166-175. Springer, Heidelberg (2003)
    • (2003) LNCS , vol.2709 , pp. 166-175
    • Ayad, H.1    Kamel, M.2
  • 17
    • 79957951698 scopus 로고    scopus 로고
    • The Role of Hubness in Clustering High-Dimensional Data
    • Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part I. Springer, Heidelberg
    • Tomašev, N., Radovanović, M., Mladenić, D., Ivanović, M.: The Role of Hubness in Clustering High-Dimensional Data. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part I. LNCS, vol. 6634, pp. 183-195. Springer, Heidelberg (2011)
    • (2011) LNCS , vol.6634 , pp. 183-195
    • Tomašev, N.1    Radovanović, M.2    Mladenić, D.3    Ivanović, M.4
  • 18
    • 79957951964 scopus 로고    scopus 로고
    • INSIGHT: Efficient and Effective Instance Selection for Time-Series Classification
    • Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. Springer, Heidelberg
    • Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: INSIGHT: Efficient and Effective Instance Selection for Time-Series Classification. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 149-160. Springer, Heidelberg (2011)
    • (2011) LNCS , vol.6635 , pp. 149-160
    • Buza, K.1    Nanopoulos, A.2    Schmidt-Thieme, L.3
  • 22
    • 84896546763 scopus 로고    scopus 로고
    • Nearest neighbor voting in high-dimensional data: Learning from past occurences
    • Tomašev, N., Mladenić, D.: Nearest neighbor voting in high-dimensional data: learning from past occurences. In: PhD forum, ICDM Conference
    • PhD Forum, ICDM Conference
    • Tomašev, N.1    Mladenić, D.2
  • 24
    • 0000388992 scopus 로고
    • Consistent nonparametric regression
    • Stone, C.J.: Consistent nonparametric regression. Annals of Statistics 5, 595-645 (1977)
    • (1977) Annals of Statistics , vol.5 , pp. 595-645
    • Stone, C.J.1
  • 25
    • 21844511932 scopus 로고
    • On the strong universal consistency of nearest neighbor regression function estimates
    • Devroye, L., Györfi, A.K., Lugosi, G.: On the strong universal consistency of nearest neighbor regression function estimates. Annals of Statistics 22, 1371-1385 (1994)
    • (1994) Annals of Statistics , vol.22 , pp. 1371-1385
    • Devroye, L.1    Györfi, A.K.2    Lugosi, G.3
  • 28
    • 70449440398 scopus 로고    scopus 로고
    • Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection
    • Chen, J., Ren Fang, H., Saad, Y.: Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection. Journal of Machine Learning Research 10, 1989-2012 (2009)
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 1989-2012
    • Chen, J.1    Ren Fang, H.2    Saad, Y.3
  • 30
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91 (2004)
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91
    • Lowe, D.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.