-
2
-
-
51849099933
-
Reconstruction of markov random fields from samples: Some observations and algorithms
-
G. Bresler, E. Mossel, and A. Sly. Reconstruction of Markov random fields from samples: Some observations and algorithms. Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, pages 343-356, 2008.
-
(2008)
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques
, pp. 343-356
-
-
Bresler, G.1
Mossel, E.2
Sly, A.3
-
3
-
-
84862276319
-
A spike and slab restricted boltzmann machine
-
A. Courville, J. Bergstra, and Y. Bengio. A spike and slab restricted Boltzmann machine. Journal of Machine Learning Research, W&CP, 15, 2011.
-
(2011)
Journal of Machine Learning Research, W&CP, 15
-
-
Courville, A.1
Bergstra, J.2
Bengio, Y.3
-
4
-
-
0031120321
-
Inducing features of random fields
-
S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(4):380-393, 1997.
-
(1997)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.19
, Issue.4
, pp. 380-393
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
5
-
-
9444278508
-
Performance guarantees for regularized maximum entropy density estimation
-
M. Dudik, S. Phillips, and R. Schapire. Performance guarantees for regularized maximum entropy density estimation. Learning Theory, pages 472-486, 2004.
-
(2004)
Learning Theory
, pp. 472-486
-
-
Dudik, M.1
Phillips, S.2
Schapire, R.3
-
6
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010. URL http://www.jstatsoft.org/v33/i01/.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
8
-
-
77956889087
-
Reversible jump markov chain monte carlo computation and bayesian model determination
-
P.J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4):711-732, 1995.
-
(1995)
Biometrika
, vol.82
, Issue.4
, pp. 711-732
-
-
Green, P.J.1
-
9
-
-
78049339967
-
Expectation propagation for Bayesian multi-task feature selection
-
D. Hernandez-Lobato, J. Hernandez-Lobato, T. Helleputte, and P. Dupont. Expectation propagation for Bayesian multi-task feature selection. Machine Learning and Knowledge Discovery in Databases, pages 522-537, 2010.
-
(2010)
Machine Learning and Knowledge Discovery in Databases
, pp. 522-537
-
-
Hernandez-Lobato, D.1
Hernandez-Lobato, J.2
Helleputte, T.3
Dupont, P.4
-
10
-
-
66549109770
-
Estimation of sparse binary pairwise markov networks using pseudo-likelihoods
-
H. Hofling and R. Tibshirani. Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods. The Journal of Machine Learning Research, 10:883-906, 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 883-906
-
-
Hofling, H.1
Tibshirani, R.2
-
11
-
-
0009349032
-
A generalized guided monte carlo algorithms
-
A.M. Horowitz. A generalized guided Monte Carlo algorithms. Physics Letters B, 268(2):247-252, 1991.
-
(1991)
Physics Letters B
, vol.268
, Issue.2
, pp. 247-252
-
-
Horowitz, A.M.1
-
12
-
-
66549117792
-
Log-linear models for gene association
-
J. Hu, A. Joshi, and V.E. Johnson. Log-linear models for gene association. Journal of the American Statistical Association, 104(486):597-607, 2009.
-
(2009)
Journal of the American Statistical Association
, vol.104
, Issue.486
, pp. 597-607
-
-
Hu, J.1
Joshi, A.2
Johnson, V.E.3
-
13
-
-
22944460748
-
Spike and slab variable selection: Frequentist and bayesian strategies
-
H. Ishwaran and J.S. Rao. Spike and slab variable selection: frequentist and Bayesian strategies. The Annals of Statistics, 33(2):730-773, 2005.
-
(2005)
The Annals of Statistics
, vol.33
, Issue.2
, pp. 730-773
-
-
Ishwaran, H.1
Rao, J.S.2
-
14
-
-
20144364427
-
Experiments in stochastic computation for high-dimensional graphical models
-
B. Jones, C. Carvalho, A. Dobra, C. Hans, C. Carter, and M. West. Experiments in stochastic computation for high-dimensional graphical models. Statistical Science, 20(4):388-400, 2005.
-
(2005)
Statistical Science
, vol.20
, Issue.4
, pp. 388-400
-
-
Jones, B.1
Carvalho, C.2
Dobra, A.3
Hans, C.4
Carter, C.5
West, M.6
-
17
-
-
33947652236
-
Bayesian l1-norm sparse learning in acoustics, speech and signal processing, 2006
-
IEEE
-
Y. Lin and D.D. Lee. Bayesian L1-norm sparse learning. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, volume 5, pages V-V. IEEE, 2006.
-
(2006)
ICASSP 2006 Proceedings. 2006 IEEE International Conference on
, vol.5
, pp. 5-5
-
-
Lin, Y.1
Lee, D.D.2
-
26
-
-
77951455815
-
Highdimensional ising model selection using l1-regularized logistic regression
-
P. Ravikumar, M.J. Wainwright, and J.D. Lafferty. Highdimensional ising model selection using L1-regularized logistic regression. The Annals of Statistics, 38(3):1287-1319, 2010.
-
(2010)
The Annals of Statistics
, vol.38
, Issue.3
, pp. 1287-1319
-
-
Ravikumar, P.1
Wainwright, M.J.2
Lafferty, J.D.3
-
27
-
-
85117181888
-
Incremental feature selection and L1 regularization for relaxed maximum-entropy modeling
-
S. Riezler and A. Vasserman. Incremental feature selection and L1 regularization for relaxed maximum-entropy modeling. In Proceedings of EMNLP, volume 4, 2004.
-
(2004)
Proceedings of EMNLP
, vol.4
-
-
Riezler, S.1
Vasserman, A.2
-
28
-
-
34147137805
-
An introduction to exponential random graph models for social networks
-
G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An introduction to exponential random graph models for social networks. Social networks, 29(2):173-191, 2007.
-
(2007)
Social Networks
, vol.29
, Issue.2
, pp. 173-191
-
-
Robins, G.1
Pattison, P.2
Kalish, Y.3
Lusher, D.4
-
30
-
-
56449086223
-
Training restricted Boltzmann machines using approximations to the likelihood gradients
-
T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradients. In Proceedings of the International Conference on Machine Learning, volume 25, pages 1064-1071, 2008.
-
(2008)
Proceedings of the International Conference on Machine Learning
, vol.25
, pp. 1064-1071
-
-
Tieleman, T.1
-
34
-
-
77956195990
-
Grafting-light: Fast, incremental feature selection and structure learning of markov random fields
-
ACM
-
J. Zhu, N. Lao, and E.P. Xing. Grafting-light: fast, incremental feature selection and structure learning of Markov random fields. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 303-312. ACM, 2010.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 303-312
-
-
Zhu, J.1
Lao, N.2
Xing, E.P.3
|