메뉴 건너뛰기




Volumn , Issue , 2012, Pages 174-184

Bayesian structure learning for markov random fields with a spike and slab prior

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN STRUCTURE LEARNING; CONNECTIVITY STRUCTURES; FULLY BAYESIAN APPROACHES; OPTIMAL REGULARIZATION; PREDICTIVE PERFORMANCE; REGULARIZATION PARAMETERS; REGULARIZED OPTIMIZATIONS; REVERSIBLE JUMP MCMC;

EID: 84886056511     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (34)
  • 5
    • 9444278508 scopus 로고    scopus 로고
    • Performance guarantees for regularized maximum entropy density estimation
    • M. Dudik, S. Phillips, and R. Schapire. Performance guarantees for regularized maximum entropy density estimation. Learning Theory, pages 472-486, 2004.
    • (2004) Learning Theory , pp. 472-486
    • Dudik, M.1    Phillips, S.2    Schapire, R.3
  • 6
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010. URL http://www.jstatsoft.org/v33/i01/.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 8
    • 77956889087 scopus 로고
    • Reversible jump markov chain monte carlo computation and bayesian model determination
    • P.J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4):711-732, 1995.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 711-732
    • Green, P.J.1
  • 10
    • 66549109770 scopus 로고    scopus 로고
    • Estimation of sparse binary pairwise markov networks using pseudo-likelihoods
    • H. Hofling and R. Tibshirani. Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods. The Journal of Machine Learning Research, 10:883-906, 2009.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 883-906
    • Hofling, H.1    Tibshirani, R.2
  • 11
    • 0009349032 scopus 로고
    • A generalized guided monte carlo algorithms
    • A.M. Horowitz. A generalized guided Monte Carlo algorithms. Physics Letters B, 268(2):247-252, 1991.
    • (1991) Physics Letters B , vol.268 , Issue.2 , pp. 247-252
    • Horowitz, A.M.1
  • 13
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Frequentist and bayesian strategies
    • H. Ishwaran and J.S. Rao. Spike and slab variable selection: frequentist and Bayesian strategies. The Annals of Statistics, 33(2):730-773, 2005.
    • (2005) The Annals of Statistics , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 14
    • 20144364427 scopus 로고    scopus 로고
    • Experiments in stochastic computation for high-dimensional graphical models
    • B. Jones, C. Carvalho, A. Dobra, C. Hans, C. Carter, and M. West. Experiments in stochastic computation for high-dimensional graphical models. Statistical Science, 20(4):388-400, 2005.
    • (2005) Statistical Science , vol.20 , Issue.4 , pp. 388-400
    • Jones, B.1    Carvalho, C.2    Dobra, A.3    Hans, C.4    Carter, C.5    West, M.6
  • 17
    • 33947652236 scopus 로고    scopus 로고
    • Bayesian l1-norm sparse learning in acoustics, speech and signal processing, 2006
    • IEEE
    • Y. Lin and D.D. Lee. Bayesian L1-norm sparse learning. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, volume 5, pages V-V. IEEE, 2006.
    • (2006) ICASSP 2006 Proceedings. 2006 IEEE International Conference on , vol.5 , pp. 5-5
    • Lin, Y.1    Lee, D.D.2
  • 26
    • 77951455815 scopus 로고    scopus 로고
    • Highdimensional ising model selection using l1-regularized logistic regression
    • P. Ravikumar, M.J. Wainwright, and J.D. Lafferty. Highdimensional ising model selection using L1-regularized logistic regression. The Annals of Statistics, 38(3):1287-1319, 2010.
    • (2010) The Annals of Statistics , vol.38 , Issue.3 , pp. 1287-1319
    • Ravikumar, P.1    Wainwright, M.J.2    Lafferty, J.D.3
  • 27
    • 85117181888 scopus 로고    scopus 로고
    • Incremental feature selection and L1 regularization for relaxed maximum-entropy modeling
    • S. Riezler and A. Vasserman. Incremental feature selection and L1 regularization for relaxed maximum-entropy modeling. In Proceedings of EMNLP, volume 4, 2004.
    • (2004) Proceedings of EMNLP , vol.4
    • Riezler, S.1    Vasserman, A.2
  • 28
    • 34147137805 scopus 로고    scopus 로고
    • An introduction to exponential random graph models for social networks
    • G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An introduction to exponential random graph models for social networks. Social networks, 29(2):173-191, 2007.
    • (2007) Social Networks , vol.29 , Issue.2 , pp. 173-191
    • Robins, G.1    Pattison, P.2    Kalish, Y.3    Lusher, D.4
  • 30
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradients
    • T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradients. In Proceedings of the International Conference on Machine Learning, volume 25, pages 1064-1071, 2008.
    • (2008) Proceedings of the International Conference on Machine Learning , vol.25 , pp. 1064-1071
    • Tieleman, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.