메뉴 건너뛰기




Volumn 34, Issue 14, 2013, Pages 1748-1757

Classifier ensemble for an effective cytological image analysis

Author keywords

Classifier ensemble; Image analysis; Machine learning; Multiple classifier system; Pattern recognition; Trained fuser

Indexed keywords

BIOPSY; CLASSIFICATION (OF INFORMATION); DISEASES; FEATURE EXTRACTION; IMAGE ANALYSIS; IMAGE SEGMENTATION; LEARNING SYSTEMS; MEDICAL IMAGING; PATTERN RECOGNITION; PATTERN RECOGNITION SYSTEMS;

EID: 84885645688     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2013.04.030     Document Type: Article
Times cited : (20)

References (54)
  • 1
    • 77950245872 scopus 로고    scopus 로고
    • Improved automatic detection and segmentation of cell nuclei in histopathology images
    • Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B., 2010. Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57 (4), 841-852.
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , Issue.4 , pp. 841-852
    • Al-Kofahi, Y.1    Lassoued, W.2    Lee, W.3    Roysam, B.4
  • 5
    • 84872853140 scopus 로고    scopus 로고
    • Estimates of global cancer prevalence for 27 sites in the adult population in 2008
    • Bray, F., Ren, J., Masuyer, E., Ferlay, J., 2012. Estimates of global cancer prevalence for 27 sites in the adult population in 2008. Int. J. Cancer. http://dx.doi.org/ 10.1002/ijc.27711.
    • (2012) Int. J. Cancer.
    • Bray, F.1    Ren, J.2    Masuyer, E.3    Ferlay, J.4
  • 7
    • 77952046540 scopus 로고    scopus 로고
    • Good and bad diversity in majority vote ensembles
    • Brown, G., Kuncheva, L.I., 2010. Good and bad diversity in majority vote ensembles. In: MCS, pp. 124-133.
    • (2010) MCS , pp. 124-133
    • Brown, G.1    Kuncheva, L.I.2
  • 8
    • 84890491526 scopus 로고    scopus 로고
    • Automatic segmentation of overlapping nuclei with high background variation using robust estimation and flexible contour models
    • Clocksin, W.F., 2003. Automatic segmentation of overlapping nuclei with high background variation using robust estimation and flexible contour models. In: Proc. 12th Int. Conf. Image Analysis and Processing, ICIAP03, pp. 682-687.
    • (2003) Proc. 12th Int. Conf. Image Analysis and Processing, ICIAP03 , pp. 682-687
    • Clocksin, W.F.1
  • 9
    • 77957935090 scopus 로고    scopus 로고
    • Segmentation of overlapping/aggregating nuclei cells in biological images
    • Cloppet, F., Boucher, A., 2008. Segmentation of overlapping/aggregating nuclei cells in biological images. In: Proc. ICPR, IEEE, pp. 1-4.
    • (2008) Proc. ICPR, IEEE , pp. 1-4
    • Cloppet, F.1    Boucher, A.2
  • 10
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39 (1), 1-38.
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 11
    • 23044449890 scopus 로고    scopus 로고
    • Color clustering and learning for image segmentation based on neural networks
    • DOI 10.1109/TNN.2005.849822
    • Dong, G., Xie, M., 2005. Color clustering and learning for image segmentation based on neural networks. IEEE Trans. Neural Networks 16 (4), 925-936. (Pubitemid 41064323)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.4 , pp. 925-936
    • Dong, G.1    Xie, M.2
  • 12
    • 33751584745 scopus 로고    scopus 로고
    • The combining classifier: To train or not to train?
    • Duin, R., 2002. The combining classifier: to train or not to train?, In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 2, pp. 765-770. http://dx.doi.org/10.1109/ICPR.2002.1048415. (Pubitemid 44844850)
    • (2002) Proceedings - International Conference on Pattern Recognition , vol.16 , Issue.2 , pp. 765-770
    • Duin, R.P.W.1
  • 13
    • 79952857310 scopus 로고    scopus 로고
    • v2.0, cancer incidence and mortality worldwide: Iarc cancerbase no. 10 (accessed on 30.08.2012)
    • Ferlay, J., Shin, H., Bray, F., Forman, D., Mathers, C., Parkin, D., 2010. Globocan 2008 v2.0, cancer incidence and mortality worldwide: Iarc cancerbase no. 10. (accessed on 30.08.2012).
    • (2010) Globocan 2008
    • Ferlay, J.1    Shin, H.2    Bray, F.3    Forman, D.4    Mathers, C.5    Parkin, D.6
  • 14
    • 80052865396 scopus 로고    scopus 로고
    • Automatic breast cancer diagnosis based on k-means clustering and adaptive thresholding hybrid segmentation
    • Choraś, Ryszard S. (Ed.), Springer-Verlag, Berlin/ Heidelberg
    • Filipczuk, P., Kowal, M., Obuchowicz, A., 2011a. Automatic breast cancer diagnosis based on k-means clustering and adaptive thresholding hybrid segmentation. In: Choraś, Ryszard S. (Ed.), Image Processing and Communications Challenges 3. Advances in Intelligent and Soft Computing, vol. 102. Springer-Verlag, Berlin/ Heidelberg, pp. 295-303.
    • (2011) Image Processing and Communications Challenges 3. Advances in Intelligent and Soft Computing , vol.102 , pp. 295-303
    • Filipczuk, P.1    Kowal, M.2    Obuchowicz, A.3
  • 15
    • 84862498320 scopus 로고    scopus 로고
    • Fuzzy clustering and adaptive thresholding based segmentation method for breast cancer diagnosis
    • Red, M.W., Burduk, R., Kurzyński, M., Zołnierek, A. (Eds.), Springer-Verlag, Berlin/Heidelberg
    • Filipczuk, P., Kowal, M., Obuchowicz, A., 2011b. Fuzzy clustering and adaptive thresholding based segmentation method for breast cancer diagnosis. In: Red, M.W., Burduk, R., Kurzyński, M., Zołnierek, A. (Eds.), Computer Recognition Systems 4. Advances in Intelligent and Soft Computing, vol. 95. Springer-Verlag, Berlin/Heidelberg, pp. 613-622.
    • (2011) Computer Recognition Systems 4. Advances in Intelligent and Soft Computing , vol.95 , pp. 613-622
    • Filipczuk, P.1    Kowal, M.2    Obuchowicz, A.3
  • 21
    • 84865030862 scopus 로고    scopus 로고
    • Cost-sensitive splitting and selection method for medical decision support system
    • Yin, H., Costa, J., Barreto, G. (Eds.), Springer, Berlin, Heidelberg
    • Jackowski, K., Krawczyk, B., Woźniak, M., 2012. Cost-sensitive splitting and selection method for medical decision support system. In: Yin, H., Costa, J., Barreto, G. (Eds.), Intelligent Data Engineering and Automated Learning-IDEAL. Lecture Notes in Computer Science, vol. 7435. Springer, Berlin, Heidelberg, pp. 850-857.
    • (2012) Intelligent Data Engineering and Automated Learning-IDEAL. Lecture Notes in Computer Science , vol.7435 , pp. 850-857
    • Jackowski, K.1    Krawczyk, B.2    Woźniak, M.3
  • 22
    • 0029372769 scopus 로고
    • Methods for combining experts' probability assessments
    • Jacobs, R.A., 1995. Methods for combining experts' probability assessments. Neural Comput. 7 (5), 867-888.
    • (1995) Neural Comput. , vol.7 , Issue.5 , pp. 867-888
    • Jacobs, R.A.1
  • 24
    • 41249086260 scopus 로고    scopus 로고
    • Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies
    • DOI 10.2478/v10006-008-0007-x, PII E8446X75R7225W45
    • Jeleń, L., Fevens, T., Krzyzak, A., 2010. Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies. Int. J. Appl. Math. Comput. Sci. 18 (1), 75-83. (Pubitemid 351444623)
    • (2008) International Journal of Applied Mathematics and Computer Science , vol.18 , Issue.1 , pp. 75-83
    • Jelen, L.1    Fevens, T.2    Krzyzak, A.3
  • 26
    • 84880775742 scopus 로고    scopus 로고
    • Computer-aided diagnosis of breast cancer using Gaussian mixture cytological image segmentation
    • Kowal, M., Filipczuk, P., Obuchowicz, A., Korbicz, J., 2011a. Computer-aided diagnosis of breast cancer using Gaussian mixture cytological image segmentation. J. Med. Inform. Technol. 17, 257-262.
    • (2011) J. Med. Inform. Technol. , vol.17 , pp. 257-262
    • Kowal, M.1    Filipczuk, P.2    Obuchowicz, A.3    Korbicz, J.4
  • 27
    • 84862489479 scopus 로고    scopus 로고
    • Hybrid cytological image segmentation method based on competitive neural network and adaptive thresholding
    • Kowal, M., Filipczuk, P., Korbicz, J., 2011b. Hybrid cytological image segmentation method based on competitive neural network and adaptive thresholding. Pomiary, Automatyka, Kontrola 57 (11), 1448-1451.
    • (2011) Pomiary, Automatyka, Kontrola , vol.57 , Issue.11 , pp. 1448-1451
    • Kowal, M.1    Filipczuk, P.2    Korbicz, J.3
  • 28
    • 84870876652 scopus 로고    scopus 로고
    • Adaptive splitting and selection algorithm for classification of breast cytology images
    • Nguyen, N.-T., Hoang, K., Jedrzejowicz, P. (Eds.), Springer, Berlin, Heidelberg
    • Krawczyk, B., Filipczuk, P., Woźniak, M., 2012a. Adaptive splitting and selection algorithm for classification of breast cytology images. In: Nguyen, N.-T., Hoang, K., Jedrzejowicz, P. (Eds.), Computational Collective Intelligence. Technologies and Applications. Lecture Notes in Computer Science, vol. 7653. Springer, Berlin, Heidelberg, pp. 475-484.
    • (2012) Computational Collective Intelligence. Technologies and Applications. Lecture Notes in Computer Science , vol.7653 , pp. 475-484
    • Krawczyk, B.1    Filipczuk, P.2    Woźniak, M.3
  • 31
    • 84866744031 scopus 로고    scopus 로고
    • Combining classifiers under probabilistic models: Experimental comparative analysis of methods
    • Kurzynski, M., Woźniak, M., 2012. Combining classifiers under probabilistic models: experimental comparative analysis of methods. Expert Syst. 29 (4), 374-393.
    • (2012) Expert Syst. , vol.29 , Issue.4 , pp. 374-393
    • Kurzynski, M.1    Woźniak, M.2
  • 32
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Lloyd, S.P., 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theory 28 (2), 129-137.
    • (1982) IEEE Trans. Inform. Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.P.1
  • 34
    • 62349140853 scopus 로고    scopus 로고
    • Automated breast cancer diagnosis based on GVF-Snake segmentation, wavelet features extraction and fuzzy classification
    • Malek, J., Sebri, A., Mabrouk, S., Torki, K., Tourki, R., 2009. Automated breast cancer diagnosis based on GVF-Snake segmentation, wavelet features extraction and fuzzy classification. J. Signal Process. Syst. 55, 49-66.
    • (2009) J. Signal Process. Syst. , vol.55 , pp. 49-66
    • Malek, J.1    Sebri, A.2    Mabrouk, S.3    Torki, K.4    Tourki, R.5
  • 38
    • 84858439207 scopus 로고    scopus 로고
    • Prostate cancer grading: Gland segmentation and structural features
    • Nguyen, K., Sabata, B., Jain, A., 2012. Prostate cancer grading: gland segmentation and structural features. Pattern Recognition Lett. 33 (7), 951-961.
    • (2012) Pattern Recognition Lett. , vol.33 , Issue.7 , pp. 951-961
    • Nguyen, K.1    Sabata, B.2    Jain, A.3
  • 40
    • 59649109760 scopus 로고    scopus 로고
    • Computational intelligence techniques in image segmentation for cytopathology
    • Smoliński, T.G., Milanova, M.G., Hassanien, A.-G. (Eds.), Springer-Verlag, Berlin
    • Obuchowicz, A., Hrebień, M., Nieczkowski, T., Marciniak, A., 2008. Computational intelligence techniques in image segmentation for cytopathology. In: Smoliński, T.G., Milanova, M.G., Hassanien, A.-G. (Eds.), Computational Intelligence in Biomedicine and Bioinformatics. Springer-Verlag, Berlin, pp. 169-199.
    • (2008) Computational Intelligence in Biomedicine and Bioinformatics , pp. 169-199
    • Obuchowicz, A.1    Hrebień, M.2    Nieczkowski, T.3    Marciniak, A.4
  • 42
    • 79851507983 scopus 로고    scopus 로고
    • Combining shape, texture and intensity features for cell nuclei extraction in pap smear images
    • Plissiti, M., Nikou, C., Charchanti, A., 2011. Combining shape, texture and intensity features for cell nuclei extraction in pap smear images. Pattern Recognition Lett. 32 (6), 838-853.
    • (2011) Pattern Recognition Lett. , vol.32 , Issue.6 , pp. 838-853
    • Plissiti, M.1    Nikou, C.2    Charchanti, A.3
  • 43
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta, D., Gabrys, B., 2005. Classifier selection for majority voting. Inform. Fusion 6 (1), 63-81.
    • (2005) Inform. Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 51
    • 70350655395 scopus 로고    scopus 로고
    • Some remarks on chosen methods of classifier fusion based on weighted voting
    • Corchado, E., Wu, X., Oja, E., Herrero, A., Baruque, B. (Eds.), Springer, Berlin/Heidelberg
    • Woźniak, M., Jackowski, K., 2009. Some remarks on chosen methods of classifier fusion based on weighted voting. In: Corchado, E., Wu, X., Oja, E., Herrero, A., Baruque, B. (Eds.), Hybrid Artificial Intelligence Systems. Lecture Notes in Computer Science, vol. 5572. Springer, Berlin/Heidelberg, pp. 541-548.
    • (2009) Hybrid Artificial Intelligence Systems. Lecture Notes in Computer Science , vol.5572 , pp. 541-548
    • Woźniak, M.1    Jackowski, K.2
  • 52
    • 84870951760 scopus 로고    scopus 로고
    • Combined classifier based on feature space partitioning
    • Woźniak, M., Krawczyk, B., 2012. Combined classifier based on feature space partitioning. J. Appl. Math. Comput. Sci. 22 (4), 855-866.
    • (2012) J. Appl. Math. Comput. Sci. , vol.22 , Issue.4 , pp. 855-866
    • Woźniak, M.1    Krawczyk, B.2
  • 53
    • 79952139706 scopus 로고    scopus 로고
    • Combining classifiers using trained fuser-analytical and experimental results
    • Woźniak, M., Zmyslony, M., 2010. Combining classifiers using trained fuser-analytical and experimental results. Neural Network World 13 (7), 925-934.
    • (2010) Neural Network World , vol.13 , Issue.7 , pp. 925-934
    • Woźniak, M.1    Zmyslony, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.