메뉴 건너뛰기




Volumn 40, Issue 3, 2010, Pages 240-251

Breast-Cancer identification using HMM-fuzzy approach

Author keywords

Classification; Feature selection; Fuzzy logic; Hidden Markov model (HMM); Receiver operating characteristics (ROC)

Indexed keywords

AREA UNDER THE ROC CURVE; BREAST CANCER; BREAST LESION; CLASSIFICATION; CLASSIFICATION ACCURACY; CLASSIFICATION FEATURES; CLASSIFICATION PERFORMANCE; COMPUTATIONAL TOOLS; DATA SETS; DEVELOPED MODEL; FEATURE SELECTION AND CLASSIFICATION; FUZZY APPROACH; GRADIENT DESCENT ALGORITHMS; LOG LIKELIHOOD; RECEIVER OPERATING CHARACTERISTICS; WISCONSIN;

EID: 77549087808     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2009.11.003     Document Type: Article
Times cited : (32)

References (29)
  • 1
    • 0029428884 scopus 로고
    • Feature extraction by genetic algorithms for neural networks in breast cancer classification
    • B.G. Kermani, M.W. White, H.T. Nagle, Feature extraction by genetic algorithms for neural networks in breast cancer classification, in: Proceedings of the 1995 IEEE-EMBC and CMBEC, 1995, pp. 831-832.
    • (1995) Proceedings of the 1995 IEEE-EMBC and CMBEC , pp. 831-832
    • Kermani, B.G.1    White, M.W.2    Nagle, H.T.3
  • 2
    • 0029100867 scopus 로고
    • Evolving neural network for detecting breast cancer
    • Fogel D.B., Wasson E.C., and Boughton E.M. Evolving neural network for detecting breast cancer. Cancer Letter 96 (1995) 49-53
    • (1995) Cancer Letter , vol.96 , pp. 49-53
    • Fogel, D.B.1    Wasson, E.C.2    Boughton, E.M.3
  • 4
    • 0036275180 scopus 로고    scopus 로고
    • An evolutionary artificial neural network approach for breast cancer diagnosis
    • Abbas H.A. An evolutionary artificial neural network approach for breast cancer diagnosis. Artificial Intelligence in Medicine 25 (2001) 265-281
    • (2001) Artificial Intelligence in Medicine , vol.25 , pp. 265-281
    • Abbas, H.A.1
  • 5
    • 0026453958 scopus 로고
    • Training a 3-node neural networks is np-complete
    • Blum A.L., and Rivest R.L. Training a 3-node neural networks is np-complete. Neural Networks 5 (1992) 117-127
    • (1992) Neural Networks , vol.5 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 7
    • 77549083950 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D., and Kruse R. Obtaining interpretable fuzzy classification rules from medical data. Artificial Intelligence in Medicine 5 (1999) 523-535
    • (1999) Artificial Intelligence in Medicine , vol.5 , pp. 523-535
    • Nauck, D.1    Kruse, R.2
  • 10
    • 34250729510 scopus 로고    scopus 로고
    • M.R. Hassan, B. Nath, M. Kirley, A HMM based fuzzy model for time series prediction, in: Proceedings of the FUZZ-IEEE Conference, 2006, pp. 9966-9974.
    • M.R. Hassan, B. Nath, M. Kirley, A HMM based fuzzy model for time series prediction, in: Proceedings of the FUZZ-IEEE Conference, 2006, pp. 9966-9974.
  • 13
  • 15
    • 31744433876 scopus 로고    scopus 로고
    • Identifying rule-based TSK fuzzy models
    • M. Mannle, Identifying rule-based TSK fuzzy models, in: Proceedings of the EUFIT, 1999, pp. 286-299.
    • (1999) Proceedings of the EUFIT , pp. 286-299
    • Mannle, M.1
  • 16
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77 (1989) 257-286
    • (1989) Proceedings of the IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 18
    • 77549085953 scopus 로고    scopus 로고
    • Online: divide and conquer algorithm, Accessed on 15 February, 2007
    • Online: divide and conquer algorithm 〈http://en.wikipedia.org/wiki/divide-and-conquer-algorithm〉, Accessed on 15 February, 2007.
  • 19
    • 0012280862 scopus 로고    scopus 로고
    • A new method for generating fuzzy rules from numerical data for handling classification problems
    • Chen S.M., and Lee S.H. A new method for generating fuzzy rules from numerical data for handling classification problems. Applied Artificial Intelligence (2001) 645-664
    • (2001) Applied Artificial Intelligence , pp. 645-664
    • Chen, S.M.1    Lee, S.H.2
  • 20
    • 0037363497 scopus 로고    scopus 로고
    • Automatic generation of fuzzy rule-based models from data by genetic algorithms
    • Angelov P.P., and Buswell R.A. Automatic generation of fuzzy rule-based models from data by genetic algorithms. Information Science (2003) 17-31
    • (2003) Information Science , pp. 17-31
    • Angelov, P.P.1    Buswell, R.A.2
  • 24
    • 0025651706 scopus 로고
    • Multisurface method of pattern separation for medical diagnosis applied to breast cytology
    • Wolberg W.H., and Mangasarian O.L. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences 87 (1990) 9193-9196
    • (1990) Proceedings of the National Academy of Sciences , vol.87 , pp. 9193-9196
    • Wolberg, W.H.1    Mangasarian, O.L.2
  • 25
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: dynamic evolving neural-fuzzy inference system and its application for time series prediction
    • Kasabov N.K., and Song Q. DENFIS: dynamic evolving neural-fuzzy inference system and its application for time series prediction. IEEE Transactions on Fuzzy Systems 10 (2002) 144-154
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 27
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setioni R. Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine 18 (2000) 205-219
    • (2000) Artificial Intelligence in Medicine , vol.18 , pp. 205-219
    • Setioni, R.1
  • 28
    • 33846014233 scopus 로고    scopus 로고
    • A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis
    • Sahan S., Polat K., Kodaz H., and Günes S. A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis. Computers in Biology and Medicine 37 (2007) 415-423
    • (2007) Computers in Biology and Medicine , vol.37 , pp. 415-423
    • Sahan, S.1    Polat, K.2    Kodaz, H.3    Günes, S.4
  • 29
    • 52649085294 scopus 로고    scopus 로고
    • ROC-tree: A novel decision tree induction algorithm based on receiver operating characteristics to classify gene expression data
    • M.M. Hossain, M.R. Hassan, J. Bailey, ROC-tree: A novel decision tree induction algorithm based on receiver operating characteristics to classify gene expression data, in: Proceedings of SIAM Data Mining (SDM) Conference, 2008, pp. 455-465.
    • (2008) Proceedings of SIAM Data Mining (SDM) Conference , pp. 455-465
    • Hossain, M.M.1    Hassan, M.R.2    Bailey, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.