-
1
-
-
0038374781
-
Existence of minimizing Willmore surfaces of prescribed genus
-
Bauer M., Kuwert E.: Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. 2003(10), 553-576 (2003).
-
(2003)
Int. Math. Res. Not.
, vol.2003
, Issue.10
, pp. 553-576
-
-
Bauer, M.1
Kuwert, E.2
-
2
-
-
77958010150
-
Symmetric Willmore surfaces of revolution satisfying natural boundary conditions
-
Bergner M., Dall'Acqua A., Fröhlich S.: Symmetric Willmore surfaces of revolution satisfying natural boundary conditions. Calc. Var. Partial Differ. Equ. 39(3-4), 361-378 (2010).
-
(2010)
Calc. Var. Partial Differ. Equ.
, vol.39
, Issue.3-4
, pp. 361-378
-
-
Bergner, M.1
Dall'Acqua, A.2
Fröhlich, S.3
-
3
-
-
84885600928
-
Willmore surfaces of revolution with two prescribed boundary circles
-
On-line first
-
Bergner, M., Dall'Acqua, A., Fröhlich, S.: Willmore surfaces of revolution with two prescribed boundary circles. J. Geom. Anal. (2012), On-line first.
-
(2012)
J. Geom. Anal.
-
-
Bergner, M.1
Dall'Acqua, A.2
Fröhlich, S.3
-
4
-
-
80053935210
-
Local Palais-Smale sequences for the Willmore functional
-
Bernard Y., Riviere T.: Local Palais-Smale sequences for the Willmore functional. Comm. Anal. Geom. 19(3), 563-600 (2011).
-
(2011)
Comm. Anal. Geom.
, vol.19
, Issue.3
, pp. 563-600
-
-
Bernard, Y.1
Riviere, T.2
-
6
-
-
0001874919
-
A duality theorem for Willmore surfaces
-
Bryant R. L.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20(1), 23-53 (1984).
-
(1984)
J. Differ. Geom.
, vol.20
, Issue.1
, pp. 23-53
-
-
Bryant, R.L.1
-
7
-
-
0001209959
-
Reduction for constrained variational problems and
-
Bryant R., Griffiths P.: Reduction for constrained variational problems and, Am. J. Math. 108(3), 525-570 (1986).
-
(1986)
Am. J. Math.
, vol.108
, Issue.3
, pp. 525-570
-
-
Bryant, R.1
Griffiths, P.2
-
10
-
-
71149088551
-
Classical solutions to the Dirichlet problem for Willmore surfaces of revolution
-
Dall'Acqua A., Deckelnick K., Grunau H.-C.: Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv. Calc. Var. 1(4), 379-397 (2008).
-
(2008)
Adv. Calc. Var.
, vol.1
, Issue.4
, pp. 379-397
-
-
Dall'Acqua, A.1
Deckelnick, K.2
Grunau, H.-C.3
-
11
-
-
79960350031
-
Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data
-
Dall'Acqua A., Fröhlich S., Grunau H.-C., Schieweck F.: Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv. Calc. Var. 4(1), 1-81 (2011).
-
(2011)
Adv. Calc. Var.
, vol.4
, Issue.1
, pp. 1-81
-
-
Dall'Acqua, A.1
Fröhlich, S.2
Grunau, H.-C.3
Schieweck, F.4
-
12
-
-
84986275189
-
A Navier boundary value problem for Willmore surfaces of revolution
-
Deckelnick K., Grunau H.-C.: A Navier boundary value problem for Willmore surfaces of revolution. Analysis 29(3), 229-258 (2009).
-
(2009)
Analysis
, vol.29
, Issue.3
, pp. 229-258
-
-
Deckelnick, K.1
Grunau, H.-C.2
-
13
-
-
84885579216
-
The asymptotic shape of a boundary layer of symmetric willmore surfaces of revolution
-
In: Bandle, C. et al. (eds.) Springer, Basel
-
Grunau, H.-C.: The asymptotic shape of a boundary layer of symmetric willmore surfaces of revolution. In: Bandle, C. et al. (eds.) Inequalities and Applications 2010, Volume 161 of International Series of Numerical Mathematics, pp. 19-29. Springer, Basel (2012).
-
(2012)
Inequalities and Applications 2010, Volume 161 of International Series of Numerical Mathematics
, pp. 19-29
-
-
Grunau, H.-C.1
-
14
-
-
0013515695
-
Ein Beweis der Willmoreschen Vermutung für Kanaltori
-
Hertrich-Jeromin U., Pinkall U.: Ein Beweis der Willmoreschen Vermutung für Kanaltori. J. Reine Angew. Math. 430, 21-34 (1992).
-
(1992)
J. Reine Angew. Math.
, vol.430
, pp. 21-34
-
-
Hertrich-Jeromin, U.1
Pinkall, U.2
-
16
-
-
84869148327
-
-
Arvxiv peprint arXiv: 1007. 3967
-
n. Arvxiv peprint arXiv: 1007. 3967 (2010).
-
(2010)
n
-
-
Kuwert, E.1
Li, Y.2
-
18
-
-
0002437956
-
Curve straightening and a minimax argument for closed elastic curves
-
Langer J., Singer D. A.: Curve straightening and a minimax argument for closed elastic curves. Topology 24(1), 75-88 (1985).
-
(1985)
Topology
, vol.24
, Issue.1
, pp. 75-88
-
-
Langer, J.1
Singer, D.A.2
-
19
-
-
0001851007
-
Boundary value problems for variational integrals involving surface curvatures
-
Nitsche J. C. C.: Boundary value problems for variational integrals involving surface curvatures. Q. Appl. Math. 51(2), 363-387 (1993).
-
(1993)
Q. Appl. Math.
, vol.51
, Issue.2
, pp. 363-387
-
-
Nitsche, J.C.C.1
-
20
-
-
0041082112
-
The conformal Gauss map and the stability of Willmore surfaces
-
Palmer B.: The conformal Gauss map and the stability of Willmore surfaces. Ann. Glob. Anal. Geom. 9(3), 305-317 (1991).
-
(1991)
Ann. Glob. Anal. Geom.
, vol.9
, Issue.3
, pp. 305-317
-
-
Palmer, B.1
-
21
-
-
0040214815
-
Uniqueness theorems for Willmore surfaces with fixed and free boundaries
-
Palmer B.: Uniqueness theorems for Willmore surfaces with fixed and free boundaries. Indiana Univ. Math. J. 49(4), 1581-1602 (2000).
-
(2000)
Indiana Univ. Math. J.
, vol.49
, Issue.4
, pp. 1581-1602
-
-
Palmer, B.1
-
22
-
-
41749093382
-
Analysis aspects of Willmore surfaces
-
Rivière T.: Analysis aspects of Willmore surfaces. Invent. Math. 174(1), 1-45 (2008).
-
(2008)
Invent. Math.
, vol.174
, Issue.1
, pp. 1-45
-
-
Rivière, T.1
-
23
-
-
77949775639
-
The Willmore boundary problem
-
Schätzle R.: The Willmore boundary problem. Calc. Var. Partial Differ. Equ. 37(3-4), 275-302 (2010).
-
(2010)
Calc. Var. Partial Differ. Equ.
, vol.37
, Issue.3-4
, pp. 275-302
-
-
Schätzle, R.1
-
24
-
-
0000526405
-
Existence of surfaces minimizing the Willmore functional
-
Simon L.: Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom. 1(2), 281-326 (1993).
-
(1993)
Comm. Anal. Geom.
, vol.1
, Issue.2
, pp. 281-326
-
-
Simon, L.1
-
25
-
-
0040856085
-
Plateau's Problem and the Calculus Of Variations
-
Princeton University Press, Princeton
-
Struwe, M.: Plateau's Problem and the Calculus Of Variations. Mathematical Notes, vol. 35. Princeton University Press, Princeton.
-
Mathematical Notes
, vol.35
-
-
Struwe, M.1
-
26
-
-
0002404150
-
Über konforme Geometrie I: Grundlagen der konformen Flächentheorie
-
(German)
-
Thomsen G.: Über konforme Geometrie I: Grundlagen der konformen Flächentheorie. (German). Abh. Math. Sem. Hamburg. 3, 31-56 (1923).
-
(1923)
Abh. Math. Sem. Hamburg.
, vol.3
, pp. 31-56
-
-
Thomsen, G.1
-
27
-
-
0002275656
-
On a problem of Chen
-
Willmore, et al
-
Weiner J. L.: On a problem of Chen, Willmore, et al. Indiana Univ. Math. J. 27(1), 19-35 (1978).
-
(1978)
Indiana Univ. Math. J.
, vol.27
, Issue.1
, pp. 19-35
-
-
Weiner, J.L.1
-
28
-
-
0004265477
-
-
New York: Oxford Science Publications. The Clarendon Press Oxford University Press
-
Willmore T. J.: Riemannian Geometry. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1993).
-
(1993)
Riemannian Geometry
-
-
Willmore, T.J.1
|