-
1
-
-
0038374781
-
Existence of minimizing Willmore surfaces of prescribed genus
-
Bauer M., Kuwert E.: Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. 2003(10), 553-576 (2003).
-
(2003)
Int. Math. Res. Not.
, vol.2003
, Issue.10
, pp. 553-576
-
-
Bauer, M.1
Kuwert, E.2
-
2
-
-
0001209959
-
Reduction of order for constrained variational problems
-
Bryant R., Griffiths P.: Reduction of order for constrained variational problems. Am. J. Math. 108, 525-570 (1986).
-
(1986)
Am. J. Math.
, vol.108
, pp. 525-570
-
-
Bryant, R.1
Griffiths, P.2
-
3
-
-
71149088551
-
Classical solutions to the Dirichlet problem for Willmore surfaces of revolution
-
Dall'Acqua A., Deckelnick K., Grunau H.-Ch.: Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv. Calc. Var. 1, 379-397 (2008).
-
(2008)
Adv. Calc. Var.
, vol.1
, pp. 379-397
-
-
Dall'Acqua, A.1
Deckelnick, K.2
Grunau, H.-C.3
-
4
-
-
77958010635
-
-
Dall'Acqua, A., Fröhlich, St., Grunau, H.-Ch., Schieweck, Fr.: Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data (submitted).
-
-
-
-
5
-
-
84986275189
-
A Navier boundary value problem for Willmore surfaces of revolution
-
Deckelnick K., Grunau H.-Ch.: A Navier boundary value problem for Willmore surfaces of revolution. Analysis 29, 229-258 (2009).
-
(2009)
Analysis
, vol.29
, pp. 229-258
-
-
Deckelnick, K.1
Grunau, H.-C.2
-
6
-
-
77957999423
-
-
Fröhlich, S.: Katenoidähnliche Lösungen geometrischer Variationsprobleme, Preprint 2322, FB Mathematik, TU Darmstadt (2004).
-
-
-
-
7
-
-
77958006493
-
-
Germain, S.: Recherches sur la théorie des surfaces élastiques, Imprimerie de Huzard-Courcier, Paris 1821.
-
-
-
-
8
-
-
84943997802
-
Elastic properties of lipid bylayers: Rheory and possible experiments
-
Helfrich W.: Elastic properties of lipid bylayers: theory and possible experiments. Z. Naturforsch. C. 28, 693-703 (1973).
-
(1973)
Z. Naturforsch. C.
, vol.28
, pp. 693-703
-
-
Helfrich, W.1
-
9
-
-
77957991745
-
-
Kastian, D.: Finite element approximation of two-dimensional rotationally symmetric Willmore surface. Master's thesis, University Magdeburg, 2007.
-
-
-
-
10
-
-
77958008348
-
-
Kuwert, E., Schätzle, R.: Closed surfaces with bounds on their Willmore energy. Preprint Centro di Ricerca Matematica Ennio De Giorgi, Pisa, 2008.
-
-
-
-
11
-
-
77957980760
-
-
Kuwert, E., Schätzle, R.: Minimizers of the Willmore functional under fixed conformal class. Preprint, 2008.
-
-
-
-
12
-
-
18244397186
-
Willmore tori in the 4-sphere with nontrivial normal bundle
-
Leschke K., Pedit F., Pinkall U.: Willmore tori in the 4-sphere with nontrivial normal bundle. Math. Ann. 332, 381-394 (2005).
-
(2005)
Math. Ann.
, vol.332
, pp. 381-394
-
-
Leschke, K.1
Pedit, F.2
Pinkall, U.3
-
14
-
-
77958005726
-
-
Nitsche, J. C. C.: Periodical surfaces that are extremal for energy functionals containing curvature functions. In: H. T. Davies, J. C. C. Nitsche (Eds.), Statistical Thermodynamics and Differential Geometry of Microstructured Materials, IMA Vol. in Math. App. 51, 69-98, Springer-Verlag, New York etc., 1993.
-
-
-
-
15
-
-
0001851007
-
Boundary value problems for variational integrals involving surface curvatures
-
Nitsche J. C. C.: Boundary value problems for variational integrals involving surface curvatures. Q. Appl. Math. 51, 363-387 (1993).
-
(1993)
Q. Appl. Math.
, vol.51
, pp. 363-387
-
-
Nitsche, J.C.C.1
-
16
-
-
77958017848
-
Elasticity theory of biomembrans
-
Ou-Yang Z.: Elasticity theory of biomembrans. Thin Solid Films 393, 19-23 (2001).
-
(2001)
Thin Solid Films
, vol.393
, pp. 19-23
-
-
Ou-Yang, Z.1
-
17
-
-
77958016042
-
-
Poisson, S. D.: Mémoire sur les surfaces élastiques. Cl. Sci. Mathém. Phys. Inst. de France, 2nd printing, 167-225, 1812.
-
-
-
-
18
-
-
41749093382
-
Analysis aspects of Willmore surfaces
-
Rivière T.: Analysis aspects of Willmore surfaces. Invent. Math. 174, 1-45 (2008).
-
(2008)
Invent. Math.
, vol.174
, pp. 1-45
-
-
Rivière, T.1
-
19
-
-
77949775639
-
-
Schätzle, R.: The Willmore boundary problem. Calc. Var. Partial Differ. Equs. (2009). doi: 10. 1007/s00526-009-0244-3.
-
-
-
-
20
-
-
0000526405
-
Existence of surfaces minimizing the Willmore functional
-
Simon L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1, 281-326 (1993).
-
(1993)
Commun. Anal. Geom.
, vol.1
, pp. 281-326
-
-
Simon, L.1
-
21
-
-
77958018379
-
-
von der Mosel, H.: Geometrische Variations probleme höherer Ordnung. Bonner Mathematische Schriften 293, 1996.
-
-
-
-
22
-
-
0004265477
-
-
New York: Oxford Science Publications, The Clarendon Press, Oxford University Press
-
Willmore T. J.: Riemannian Geometry. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993).
-
(1993)
Riemannian Geometry
-
-
Willmore, T.J.1
|