-
1
-
-
0038374781
-
Existence of minimizing Willmore surfaces of prescribed genus
-
Bauer, M., Kuwert, E.: Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. 2003(10), 553–576 (2003)
-
(2003)
Int. Math. Res. Not
, vol.2003
, Issue.10
, pp. 553-576
-
-
Bauer, M.1
Kuwert, E.2
-
2
-
-
0001874919
-
A duality theorem for Willmore surfaces
-
Bryant, R.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53 (1984)
-
(1984)
J. Differ. Geom
, vol.20
, pp. 23-53
-
-
Bryant, R.1
-
4
-
-
2342475802
-
A finite element method for surface restoration with smooth boundary conditions
-
Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Des. 21, 427–445 (2004)
-
(2004)
Comput. Aided Geom. Des
, vol.21
, pp. 427-445
-
-
Clarenz, U.1
Diewald, U.2
Dziuk, G.3
Rumpf, M.4
Rusu, R.5
-
5
-
-
71149088551
-
Classical solutions to the Dirichlet problem for Willmore surfaces of revolution
-
Dall’Acqua, A., Deckelnick, K., Grunau, H.-Ch.: Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv. Calc. Var. 1, 379–397 (2008)
-
(2008)
Adv. Calc. Var
, vol.1
, pp. 379-397
-
-
Dall’Acqua, A.1
Deckelnick, K.2
Grunau, H.-Ch.3
-
6
-
-
79960350031
-
Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data
-
Dall’Acqua, A., Fröhlich, S., Grunau, H.-Ch., Schieweck, F.: Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv. Calc. Var. 4, 1–81 (2011)
-
(2011)
Adv. Calc. Var
, vol.4
, pp. 1-81
-
-
Dall’Acqua, A.1
Fröhlich, S.2
Grunau, H.-Ch.3
Schieweck, F.4
-
8
-
-
84943997802
-
Elastic properties of lipid bilayers: Theory and possible experiments
-
Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments. Z. Natur-forsch. C 28, 693–703 (1973)
-
(1973)
Z. Natur-forsch. C
, vol.28
, pp. 693-703
-
-
Helfrich, W.1
-
9
-
-
0013515695
-
Ein Beweis der Willmoreschen Vermutung für Kanaltori
-
Hertrich-Jeromin, U., Pinkall, U.: Ein Beweis der Willmoreschen Vermutung für Kanaltori. J. Reine Angew. Math. 430, 21–34 (1992)
-
(1992)
J. Reine Angew. Math
, vol.430
, pp. 21-34
-
-
Hertrich-Jeromin, U.1
Pinkall, U.2
-
11
-
-
84972507666
-
The total squared curvature of closed curves
-
Langer, J., Singer, D.: The total squared curvature of closed curves. J. Differ. Geom. 20, 1–22 (1984)
-
(1984)
J. Differ. Geom
, vol.20
, pp. 1-22
-
-
Langer, J.1
Singer, D.2
-
12
-
-
0000699786
-
Curves in the hyperbolic plane and mean curvature of tori in 3-space
-
Langer, J., Singer, D.: Curves in the hyperbolic plane and mean curvature of tori in 3-space. Bull. Lond. Math. Soc. 16, 531–534 (1984)
-
(1984)
Bull. Lond. Math. Soc
, vol.16
, pp. 531-534
-
-
Langer, J.1
Singer, D.2
-
13
-
-
0001851007
-
Boundary value problems for variational integrals involving surface curvatures
-
Nitsche, J.C.C.: Boundary value problems for variational integrals involving surface curvatures. Q. Appl. Math. 51, 363–387 (1993)
-
(1993)
Q. Appl. Math
, vol.51
, pp. 363-387
-
-
Nitsche, J.C.C.1
-
14
-
-
0035422313
-
Elastic theory of biomembranes
-
Ou-Yang, Z.: Elastic theory of biomembranes. Thin Solid Films 393, 19–23 (2001)
-
(2001)
Thin Solid Films
, vol.393
, pp. 19-23
-
-
Ou-Yang, Z.1
-
17
-
-
0000526405
-
Existence of surfaces minimizing the Willmore functional
-
Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1, 281–326 (1993)
-
(1993)
Commun. Anal. Geom
, vol.1
, pp. 281-326
-
-
Simon, L.1
-
18
-
-
0002404150
-
Über konforme Geometrie I: Grundlagen der konformen Flächentheorie
-
Thomsen, G.: Über konforme Geometrie I: Grundlagen der konformen Flächentheorie. Abh. Math. Semin. Univ. Hamb. 3, 31–56 (1923)
-
(1923)
Abh. Math. Semin. Univ. Hamb
, vol.3
, pp. 31-56
-
-
Thomsen, G.1
-
19
-
-
0004265477
-
-
Oxford Science Publications, The Clarendon Press, Oxford University Press, New York
-
Willmore, T.J.: Riemannian Geometry. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993)
-
(1993)
Riemannian Geometry
-
-
Willmore, T.J.1
|