메뉴 건너뛰기




Volumn 29, Issue 20, 2013, Pages 2625-2632

Near-optimal experimental design for model selection in systems biology

Author keywords

[No Author keywords available]

Indexed keywords

TARGET OF RAPAMYCIN KINASE;

EID: 84885615538     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btt436     Document Type: Article
Times cited : (38)

References (41)
  • 1
    • 0016706915 scopus 로고
    • Optimal design: Experiments for discriminating between several models
    • Atkinson, A.C. and Fedorov, V.V. (1975) Optimal design: Experiments for discriminating between several models. Biometrika, 62, 289-303
    • (1975) Biometrika , vol.62 , pp. 289-303
    • Atkinson, A.C.1    Fedorov, V.V.2
  • 3
    • 77952291644 scopus 로고    scopus 로고
    • Of bits and wows: A Bayesian theory of surprise with applications to attention
    • Baldi, P. and Itti, L. (2010) Of bits and wows: A Bayesian theory of surprise with applications to attention. Neural Netw., 23, 649-666
    • (2010) Neural Netw , vol.23 , pp. 649-666
    • Baldi, P.1    Itti, L.2
  • 4
    • 48749095711 scopus 로고    scopus 로고
    • Computational procedures for optimal experimental design in biological systems
    • Balsa-Canto, E. et al. (2008) Computational procedures for optimal experimental design in biological systems. IET Syst. Biol., 2, 163-172
    • (2008) IET Syst. Biol , vol.2 , pp. 163-172
    • Balsa-Canto, E.1
  • 5
    • 73449142148 scopus 로고    scopus 로고
    • Optimal experimental design for parameter estimation of a cell signaling model
    • Bandara, S. et al. (2009) Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput. Biol., 5, e1000558
    • (2009) PLoS Comput. Biol , vol.5
    • Bandara, S.1
  • 6
    • 0018487598 scopus 로고
    • Quantitative estimation of insulin sensitivity
    • Bergman, R.N. et al. (1979) Quantitative estimation of insulin sensitivity. Am. J. Physiol., 236, E667-E677
    • (1979) Am. J. Physiol , vol.236
    • Bergman, R.N.1
  • 7
    • 0002928751 scopus 로고
    • Discrimination among mechanistic models
    • Box, G.E.P. and Hill, W.J. (1967) Discrimination among mechanistic models. Technometrics, 9, 57-71
    • (1967) Technometrics , vol.9 , pp. 57-71
    • Box, G.E.P.1    Hill, W.J.2
  • 13
    • 81355153795 scopus 로고    scopus 로고
    • Optimizing experimental design for comparing models of brain function
    • Daunizeau, J. et al. (2011) Optimizing experimental design for comparing models of brain function. PLoS Comput. Biol., 7, e1002280
    • (2011) PLoS Comput. Biol , vol.7
    • Daunizeau, J.1
  • 14
    • 0141803858 scopus 로고    scopus 로고
    • Parameter estimation in general state-space models using particle methods
    • Doucet, A. and Tadić V.B. (2003) Parameter estimation in general state-space models using particle methods. Ann. Inst. Stat. Math., 55, 409-422
    • (2003) Ann. Inst. Stat. Math , vol.55 , pp. 409-422
    • Doucet, A.1    Tadić, V.B.2
  • 15
    • 17344381954 scopus 로고    scopus 로고
    • Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast
    • Düvel, K. et al. (2003) Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol. Cell, 11, 1467-1478
    • (2003) Mol. Cell , vol.11 , pp. 1467-1478
    • Düvel, K.1
  • 16
    • 1342286938 scopus 로고    scopus 로고
    • Simulation methods for optimal experimental design in systems biology
    • Faller, D. et al. (2003) Simulation methods for optimal experimental design in systems biology. Simulation, 79, 717-725
    • (2003) Simulation , vol.79 , pp. 717-725
    • Faller, D.1
  • 17
    • 0032108328 scopus 로고    scopus 로고
    • A threshold of ln(n) for approximating set cover
    • Feige, U. (1998) A threshold of ln(n) for approximating set cover. J. ACM, 45, 634-652
    • (1998) J. ACM , vol.45 , pp. 634-652
    • Feige, U.1
  • 19
    • 0037079054 scopus 로고    scopus 로고
    • Computational systems biology
    • Kitano, H. (2002) Computational systems biology. Nature, 420, 206-210
    • (2002) Nature , vol.420 , pp. 206-210
    • Kitano, H.1
  • 20
    • 78049257958 scopus 로고    scopus 로고
    • New principles and adequate robust control methods for artificial pancreas
    • Springer, Berlin
    • Ková cs, L. et al. (2010) New principles and adequate robust control methods for artificial pancreas. In: Computational Intelligence in Engineering. Springer, Berlin, pp. 75-86
    • (2010) Computational Intelligence in Engineering , pp. 75-86
    • Kovács, L.1
  • 21
    • 78649420164 scopus 로고    scopus 로고
    • Towards experimental design using a Bayesian framework for parameter identification in dynamic intracellular network models
    • Kramer, A. and Radde, N. (2010) Towards experimental design using a Bayesian framework for parameter identification in dynamic intracellular network models. Procedia Comput. Sci., 1, 1645-1653
    • (2010) Procedia Comput. Sci , vol.1 , pp. 1645-1653
    • Kramer, A.1    Radde, N.2
  • 22
    • 77951177602 scopus 로고    scopus 로고
    • SFO: A toolbox for submodular function optimization
    • Krause, A. (2010) SFO: A toolbox for submodular function optimization. J. Mach. Learn. Res., 11, 1141-1144
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 1141-1144
    • Krause, A.1
  • 25
    • 58849137994 scopus 로고    scopus 로고
    • Systems biology: Experimental design
    • Kreutz, C. and Timmer, J. (2009) Systems biology: Experimental design. FEBS J., 276, 923-942
    • (2009) FEBS J. , vol.276 , pp. 923-942
    • Kreutz, C.1    Timmer, J.2
  • 27
    • 34948840834 scopus 로고    scopus 로고
    • Ensemble modeling for analysis of cell signaling dynamics
    • Kuepfer, L. et al. (2007) Ensemble modeling for analysis of cell signaling dynamics. Nat. Biotechnol., 25, 1001-1006
    • (2007) Nat. Biotechnol , vol.25 , pp. 1001-1006
    • Kuepfer, L.1
  • 28
    • 84873505176 scopus 로고    scopus 로고
    • Maximizing the information content of experiments in systems biology
    • Liepe, J. et al. (2013) Maximizing the information content of experiments in systems biology. PLoS Comput. Biol., 9, e1002888
    • (2013) PLoS Comput. Biol , vol.9
    • Liepe, J.1
  • 29
    • 77951148076 scopus 로고
    • Accelerated greedy algorithms for maximizing submodular set functions
    • Springer Berlin
    • Minoux, M. (1978) Accelerated greedy algorithms for maximizing submodular set functions. In: Optimization Techniques. Springer, Berlin, pp. 234-243
    • (1978) Optimization Techniques , pp. 234-243
    • Minoux, M.1
  • 30
    • 67651052215 scopus 로고    scopus 로고
    • Optimal experimental design for model discrimination
    • Myung, J.I. and Pitt, M.A. (2009) Optimal experimental design for model discrimination. Psychol. Rev., 116, 499
    • (2009) Psychol. Rev , vol.116 , pp. 499
    • Myung, J.I.1    Pitt, M.A.2
  • 32
    • 0000095809 scopus 로고
    • An analysis of approximations for maximizing submodular set functions
    • Nemhauser, G.L. et al. (1978) An analysis of approximations for maximizing submodular set functions. Math. Programs, 14, 265-294
    • (1978) Math. Programs , vol.14 , pp. 265-294
    • Nemhauser, G.L.1
  • 33
    • 0040056529 scopus 로고
    • Optimum experimental design for discriminating between two rival models in the presence of prior information
    • Ponce De Leon, A.C. and Atkinson, A.C. (1991) Optimum experimental design for discriminating between two rival models in the presence of prior information. Biometrika, 78, 601-608
    • (1991) Biometrika , vol.78 , pp. 601-608
    • Ponce De Leon, A.C.1    Atkinson, A.C.2
  • 34
    • 79952666135 scopus 로고    scopus 로고
    • Evolvability and robustness in a complex signalling circuit
    • Raman, K. and Wagner, A. (2011) Evolvability and robustness in a complex signalling circuit. Mol. BioSyst., 7, 1081-1092
    • (2011) Mol. BioSyst , vol.7 , pp. 1081-1092
    • Raman, K.1    Wagner, A.2
  • 35
    • 77951967006 scopus 로고    scopus 로고
    • An optimal experimental design approach to model discrimination in dynamic biochemical systems
    • Skanda, D. and Lebiedz, D. (2010) An optimal experimental design approach to model discrimination in dynamic biochemical systems. Bioinformatics, 26, 939-945
    • (2010) Bioinformatics , vol.26 , pp. 939-945
    • Skanda, D.1    Lebiedz, D.2
  • 36
    • 41149097163 scopus 로고    scopus 로고
    • Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models
    • Steinke, F. et al. (2007) Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models. BMC Syst. Biol., 1, 51
    • (2007) BMC Syst. Biol , vol.1 , pp. 51
    • Steinke, F.1
  • 37
    • 84878742739 scopus 로고    scopus 로고
    • Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism
    • Sunnåker, M. et al. (2013a) Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism. Sci. Signal., 6, ra41
    • (2013) Sci. Signal , vol.6
    • Sunnåker, M.1
  • 38
    • 84873503481 scopus 로고    scopus 로고
    • Approximate Bayesian computation
    • Sunnåker, M. et al. (2013b) Approximate Bayesian computation. PLoS Comput. Biol., 9, e1002803
    • (2013) PLoS Comput. Biol , vol.9
    • Sunnåker, M.1
  • 40
    • 77956634296 scopus 로고    scopus 로고
    • Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species
    • Xu, T.-R. et al. (2010) Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci. Signal., 3, ra20
    • (2010) Sci. Signal , vol.3
    • Xu, T.-R.1
  • 41
    • 84863203974 scopus 로고    scopus 로고
    • Unsupervised modeling of cell morphology dynamics for time-lapse microscopy
    • Zhong, Q. et al. (2012) Unsupervised modeling of cell morphology dynamics for time-lapse microscopy. Nat. Methods, 9, 711-713
    • (2012) Nat. Methods , vol.9 , pp. 711-713
    • Zhong, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.