메뉴 건너뛰기




Volumn 16, Issue 5, 2013, Pages 661-666

Ambient temperature signalling in plants

Author keywords

[No Author keywords available]

Indexed keywords

ARABIDOPSIS;

EID: 84885374515     PISSN: 13695266     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.pbi.2013.08.004     Document Type: Review
Times cited : (166)

References (51)
  • 1
    • 58149396190 scopus 로고    scopus 로고
    • Historical warnings of future food insecurity with unprecedented seasonal heat
    • Battisti D.S., Naylor R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 2009, 323:240-244.
    • (2009) Science , vol.323 , pp. 240-244
    • Battisti, D.S.1    Naylor, R.L.2
  • 2
    • 55949117328 scopus 로고    scopus 로고
    • Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change
    • Willis C.G., et al. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. Proc Natl Acad Sci U S A 2008, 105:17029-17033.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 17029-17033
    • Willis, C.G.1
  • 3
    • 84861421708 scopus 로고    scopus 로고
    • Warming experiments underpredict plant phenological responses to climate change
    • Wolkovich E.M., et al. Warming experiments underpredict plant phenological responses to climate change. Nature 2012, 485:494-497.
    • (2012) Nature , vol.485 , pp. 494-497
    • Wolkovich, E.M.1
  • 4
    • 84864548643 scopus 로고    scopus 로고
    • Low-temperature perception leading to gene expression and cold tolerance in higher plants
    • Knight M.R., Knight H. Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 2012, 195:737-751.
    • (2012) New Phytol , vol.195 , pp. 737-751
    • Knight, M.R.1    Knight, H.2
  • 5
    • 34248200940 scopus 로고    scopus 로고
    • Complexity of the heat stress response in plants
    • Kotak S., et al. Complexity of the heat stress response in plants. Curr Opin Plant Biol 2007, 10:310-316.
    • (2007) Curr Opin Plant Biol , vol.10 , pp. 310-316
    • Kotak, S.1
  • 6
    • 48249145380 scopus 로고    scopus 로고
    • Temperature perception and signal transduction in plants
    • Penfield S. Temperature perception and signal transduction in plants. New Phytol 2008, 179:615-628.
    • (2008) New Phytol , vol.179 , pp. 615-628
    • Penfield, S.1
  • 7
    • 23944478384 scopus 로고    scopus 로고
    • Ambient temperature perception in plants
    • Samach A., Wigge P.A. Ambient temperature perception in plants. Curr Opin Plant Biol 2005, 8:483-486.
    • (2005) Curr Opin Plant Biol , vol.8 , pp. 483-486
    • Samach, A.1    Wigge, P.A.2
  • 8
    • 84862786409 scopus 로고    scopus 로고
    • Transcription factor PIF4 controls the thermosensory activation of flowering
    • Kumar S.V., et al. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 2012, 484:242-245.
    • (2012) Nature , vol.484 , pp. 242-245
    • Kumar, S.V.1
  • 9
    • 72449174410 scopus 로고    scopus 로고
    • Hormonal regulation of temperature-induced growth in Arabidopsis
    • Stavang J.A., et al. Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 2009, 60:589-601.
    • (2009) Plant J , vol.60 , pp. 589-601
    • Stavang, J.A.1
  • 10
    • 33745453173 scopus 로고    scopus 로고
    • The molecular basis of temperature compensation in the Arabidopsis circadian clock
    • Gould P.D., et al. The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 2006, 18:1177-1187.
    • (2006) Plant Cell , vol.18 , pp. 1177-1187
    • Gould, P.D.1
  • 11
    • 33746597533 scopus 로고    scopus 로고
    • Potent induction of Arabidopsis thaliana flowering by elevated growth temperature
    • Balasubramanian S., et al. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2006, 2:pe106.
    • (2006) PLoS Genet , vol.2
    • Balasubramanian, S.1
  • 12
    • 73149085055 scopus 로고    scopus 로고
    • H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis
    • Kumar S.V., Wigge P.A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 2010, 140:136-140.
    • (2010) Cell , vol.140 , pp. 136-140
    • Kumar, S.V.1    Wigge, P.A.2
  • 13
    • 70350627251 scopus 로고    scopus 로고
    • Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis
    • van Zanten M., et al. Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. Plant Physiol 2009, 151:1446-1458.
    • (2009) Plant Physiol , vol.151 , pp. 1446-1458
    • van Zanten, M.1
  • 14
    • 84861501909 scopus 로고    scopus 로고
    • High temperature exposure increases plant cooling capacity
    • Crawford A.J., et al. High temperature exposure increases plant cooling capacity. Curr Biol: CB 2012, 22:R396-R397.
    • (2012) Curr Biol: CB , vol.22
    • Crawford, A.J.1
  • 15
    • 84873103725 scopus 로고    scopus 로고
    • High temperature acclimation through PIF4 signaling
    • Proveniers M.C., van Zanten M. High temperature acclimation through PIF4 signaling. Trends Plant Sci 2013, 18:59-64.
    • (2013) Trends Plant Sci , vol.18 , pp. 59-64
    • Proveniers, M.C.1    van Zanten, M.2
  • 16
    • 61449135764 scopus 로고    scopus 로고
    • High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4
    • Koini M.A., et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 2009, 19:408-413.
    • (2009) Curr Biol , vol.19 , pp. 408-413
    • Koini, M.A.1
  • 17
    • 84864876885 scopus 로고    scopus 로고
    • Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses
    • Oh E., Zhu J.Y., Wang Z.Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 2012, 14:802-809.
    • (2012) Nat Cell Biol , vol.14 , pp. 802-809
    • Oh, E.1    Zhu, J.Y.2    Wang, Z.Y.3
  • 18
    • 84865526135 scopus 로고    scopus 로고
    • Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling
    • Hornitschek P., et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 2012, 71:699-711.
    • (2012) Plant J , vol.71 , pp. 699-711
    • Hornitschek, P.1
  • 19
    • 0037340948 scopus 로고    scopus 로고
    • Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT
    • Halliday K.J., et al. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 2003, 33:875-885.
    • (2003) Plant J , vol.33 , pp. 875-885
    • Halliday, K.J.1
  • 20
    • 84876023406 scopus 로고    scopus 로고
    • Generation and analysis of a complete mutant set for the Arabidopsis FT/TFL1 family shows specific effects on thermo-sensitive flowering regulation
    • Kim W., et al. Generation and analysis of a complete mutant set for the Arabidopsis FT/TFL1 family shows specific effects on thermo-sensitive flowering regulation. J Exp Bot 2013, 64:1715-1729.
    • (2013) J Exp Bot , vol.64 , pp. 1715-1729
    • Kim, W.1
  • 21
    • 84873556100 scopus 로고    scopus 로고
    • Circadian clock and PIF4-mediated external coincidence mechanism coordinately integrates both of the cues from seasonal changes in photoperiod and temperature to regulate plant growth in Arabidopsis thaliana
    • Nomoto Y., et al. Circadian clock and PIF4-mediated external coincidence mechanism coordinately integrates both of the cues from seasonal changes in photoperiod and temperature to regulate plant growth in Arabidopsis thaliana. Plant Signal Behav 2012, 8:pe22863.
    • (2012) Plant Signal Behav , vol.8
    • Nomoto, Y.1
  • 22
    • 34447520296 scopus 로고    scopus 로고
    • Rhythmic growth explained by coincidence between internal and external cues
    • Nozue K., et al. Rhythmic growth explained by coincidence between internal and external cues. Nature 2007, 448:358-361.
    • (2007) Nature , vol.448 , pp. 358-361
    • Nozue, K.1
  • 23
    • 84869169171 scopus 로고    scopus 로고
    • Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana
    • Nomoto Y., et al. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol 2012, 53:1950-1964.
    • (2012) Plant Cell Physiol , vol.53 , pp. 1950-1964
    • Nomoto, Y.1
  • 24
    • 84869169089 scopus 로고    scopus 로고
    • A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana
    • Nomoto Y., et al. A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol 2012, 53:1965-1973.
    • (2012) Plant Cell Physiol , vol.53 , pp. 1965-1973
    • Nomoto, Y.1
  • 25
    • 84874735092 scopus 로고    scopus 로고
    • Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana
    • Yamashino T., et al. Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana. Plant Signal Behav 2013, 8.
    • (2013) Plant Signal Behav , vol.8
    • Yamashino, T.1
  • 26
    • 79251537181 scopus 로고    scopus 로고
    • Light receptor action is critical for maintaining plant biomass at warm ambient temperatures
    • Foreman J., et al. Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J 2011, 65:441-452.
    • (2011) Plant J , vol.65 , pp. 441-452
    • Foreman, J.1
  • 27
    • 80054000004 scopus 로고    scopus 로고
    • Environmental memory from a circadian oscillator: the Arabidopsis thaliana clock differentially integrates perception of photic vs. thermal entrainment
    • Boikoglou E., et al. Environmental memory from a circadian oscillator: the Arabidopsis thaliana clock differentially integrates perception of photic vs. thermal entrainment. Genetics 2011, 189:655-664.
    • (2011) Genetics , vol.189 , pp. 655-664
    • Boikoglou, E.1
  • 28
    • 79955477525 scopus 로고    scopus 로고
    • Light inputs shape the Arabidopsis circadian system
    • Wenden B., et al. Light inputs shape the Arabidopsis circadian system. Plant J 2011, 66:480-491.
    • (2011) Plant J , vol.66 , pp. 480-491
    • Wenden, B.1
  • 29
    • 40149105297 scopus 로고    scopus 로고
    • Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules
    • Michael T.P., et al. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 2008, 4:e14.
    • (2008) PLoS Genet , vol.4
    • Michael, T.P.1
  • 30
    • 20444382245 scopus 로고    scopus 로고
    • PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock
    • Salome P.A., McClung C.R. PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 2005, 17:791-803.
    • (2005) Plant Cell , vol.17 , pp. 791-803
    • Salome, P.A.1    McClung, C.R.2
  • 31
    • 78650894699 scopus 로고    scopus 로고
    • The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation
    • Salome P.A., Weigel D., McClung C.R. The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 2010, 22:3650-3661.
    • (2010) Plant Cell , vol.22 , pp. 3650-3661
    • Salome, P.A.1    Weigel, D.2    McClung, C.R.3
  • 32
    • 77649267906 scopus 로고    scopus 로고
    • Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock
    • Thines B., Harmon F.G. Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc Natl Acad Sci U S A 2010, 107:3257-3262.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 3257-3262
    • Thines, B.1    Harmon, F.G.2
  • 33
    • 78649714225 scopus 로고    scopus 로고
    • The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis
    • Portoles S., Mas P. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet 2010, 6:pe1001201.
    • (2010) PLoS Genet , vol.6
    • Portoles, S.1    Mas, P.2
  • 34
    • 84860128193 scopus 로고    scopus 로고
    • Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes
    • James A.B., et al. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 2012, 24:961-981.
    • (2012) Plant Cell , vol.24 , pp. 961-981
    • James, A.B.1
  • 35
    • 79953730633 scopus 로고    scopus 로고
    • REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock
    • Rawat R., et al. REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genet 2011, 7:e1001350.
    • (2011) PLoS Genet , vol.7
    • Rawat, R.1
  • 36
    • 84884171759 scopus 로고    scopus 로고
    • Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures
    • Gould P.D., et al. Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures. Mol Syst Biol 2013, 9:650.
    • (2013) Mol Syst Biol , vol.9 , pp. 650
    • Gould, P.D.1
  • 37
    • 84891628416 scopus 로고    scopus 로고
    • A fast circadian clock at high temperatures is a conserved feature across Arabidopsis accessions and likely to be important for vegetative yield
    • Kusakina J., Gould P.D., Hall A. A fast circadian clock at high temperatures is a conserved feature across Arabidopsis accessions and likely to be important for vegetative yield. Plant Cell Environ 2013, 10.1111/pce.12152.
    • (2013) Plant Cell Environ
    • Kusakina, J.1    Gould, P.D.2    Hall, A.3
  • 38
    • 0032499695 scopus 로고    scopus 로고
    • High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis
    • Gray W.M., et al. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci U S A 1998, 95:7197-7202.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 7197-7202
    • Gray, W.M.1
  • 39
    • 84055200494 scopus 로고    scopus 로고
    • PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature
    • Franklin K.A., et al. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A 2011, 108:20231-20235.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 20231-20235
    • Franklin, K.A.1
  • 40
    • 84861208923 scopus 로고    scopus 로고
    • PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth
    • Sun J., et al. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet 2012, 8:pe1002594.
    • (2012) PLoS Genet , vol.8
    • Sun, J.1
  • 41
    • 84874941530 scopus 로고    scopus 로고
    • Temperature-dependent shade avoidance involves the receptor-like kinase ERECTA
    • Patel D., et al. Temperature-dependent shade avoidance involves the receptor-like kinase ERECTA. Plant J 2013, 73:980-992.
    • (2013) Plant J , vol.73 , pp. 980-992
    • Patel, D.1
  • 42
    • 66149155878 scopus 로고    scopus 로고
    • Analysis of temperature modulation of plant defense against biotrophic microbes
    • Wang Y., et al. Analysis of temperature modulation of plant defense against biotrophic microbes. Mol Plant-Microbe Interact: MPMI 2009, 22:498-506.
    • (2009) Mol Plant-Microbe Interact: MPMI , vol.22 , pp. 498-506
    • Wang, Y.1
  • 43
    • 0035449351 scopus 로고    scopus 로고
    • Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes
    • Hua J., et al. Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev 2001, 15:2263-2272.
    • (2001) Genes Dev , vol.15 , pp. 2263-2272
    • Hua, J.1
  • 44
    • 1842662394 scopus 로고    scopus 로고
    • A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis
    • Yang S., Hua J. A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 2004, 16:1060-1071.
    • (2004) Plant Cell , vol.16 , pp. 1060-1071
    • Yang, S.1    Hua, J.2
  • 45
    • 78650979533 scopus 로고    scopus 로고
    • Induction of BAP1 by a moderate decrease in temperature is mediated by ICE1 in Arabidopsis
    • Zhu Y., et al. Induction of BAP1 by a moderate decrease in temperature is mediated by ICE1 in Arabidopsis. Plant Physiol 2011, 155:580-588.
    • (2011) Plant Physiol , vol.155 , pp. 580-588
    • Zhu, Y.1
  • 46
    • 77954041033 scopus 로고    scopus 로고
    • Temperature modulates plant defense responses through NB-LRR proteins
    • Zhu Y., Qian W., Hua J. Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 2010, 6:pe1000844.
    • (2010) PLoS Pathog , vol.6
    • Zhu, Y.1    Qian, W.2    Hua, J.3
  • 47
    • 83055194364 scopus 로고    scopus 로고
    • The impact of temperature on balancing immune responsiveness and growth in Arabidopsis
    • Alcazar R., Parker J.E. The impact of temperature on balancing immune responsiveness and growth in Arabidopsis. Trends Plant Sci 2011, 16:666-675.
    • (2011) Trends Plant Sci , vol.16 , pp. 666-675
    • Alcazar, R.1    Parker, J.E.2
  • 48
    • 84868122260 scopus 로고    scopus 로고
    • Deposition of histone variant H2A.Z within gene bodies regulates responsive genes
    • Coleman-Derr D., Zilberman D. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 2012, 8:pe1002988.
    • (2012) PLoS Genet , vol.8
    • Coleman-Derr, D.1    Zilberman, D.2
  • 49
    • 34247270292 scopus 로고    scopus 로고
    • SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6
    • March-Diaz R., et al. SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6. Plant Physiol 2007, 143:893-901.
    • (2007) Plant Physiol , vol.143 , pp. 893-901
    • March-Diaz, R.1
  • 51
    • 84863393543 scopus 로고    scopus 로고
    • An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time
    • Chew Y.H., et al. An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. New Phytol 2012, 194:654-665.
    • (2012) New Phytol , vol.194 , pp. 654-665
    • Chew, Y.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.