메뉴 건너뛰기




Volumn 24, Issue 10, 2013, Pages 1553-1564

Mean vector component analysis for visualization and clustering of nonnegative data

Author keywords

Clustering; eigenvalues (spectrum); eigenvectors; inner product matrix; mean vector; nonnegative data; principal component analysis; visualization

Indexed keywords

CLUSTERING ALGORITHMS; DATA VISUALIZATION; EIGENVALUES AND EIGENFUNCTIONS; FLOW VISUALIZATION; MATRIX ALGEBRA; VECTORS; VISUALIZATION;

EID: 84885179073     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2013.2262774     Document Type: Article
Times cited : (16)

References (42)
  • 4
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • K. Pearson, On lines and planes of closest fit to systems of points in space Phil. Mag., vol. 2, no. 6, pp. 559-572, 1901.
    • (1901) Phil. Mag. , vol.2 , Issue.6 , pp. 559-572
    • Pearson, K.1
  • 5
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • H. Hotelling, Analysis of a complex of statistical variables into principal components J. Educ. Psychol., vol. 24, no. 1, pp. 417-441, 1933.
    • (1933) J. Educ. Psychol. , vol.24 , Issue.1 , pp. 417-441
    • Hotelling, H.1
  • 7
    • 0020464111 scopus 로고
    • Simplified neuron model as a principal component analyzer
    • E. Oja, Simplified neuron model as a principal component analyzer J. Math. Biol., vol. 15, no. 3, pp. 267-273, 1982.
    • (1982) J. Math. Biol. , vol.15 , Issue.3 , pp. 267-273
    • Oja, E.1
  • 10
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. MacQueen, Some methods for classification and analysis of multivariate observations in Proc. Berkeley Symp. Math. Stat. Probab., 1967, pp. 281-297.
    • (1967) Proc. Berkeley Symp. Math. Stat. Probab. , pp. 281-297
    • Macqueen, J.1
  • 11
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Jul. 1998
    • B. Schölkopf, A. J. Smola, and K.-r. Müller, Nonlinear component analysis as a kernel eigenvalue problem Neural Comput., vol. 10, no. 5, pp. 1299-1319, Jul. 1998.
    • Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 12
    • 84876903780 scopus 로고    scopus 로고
    • Hybrid dimensionality reduction method based on support vector machine and independent component analysis
    • May 2012
    • S. Moon and H. Qi, Hybrid dimensionality reduction method based on support vector machine and independent component analysis IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 749-761, May 2012.
    • IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.5 , pp. 749-761
    • Moon, S.1    Qi, H.2
  • 13
    • 84872975921 scopus 로고    scopus 로고
    • A unified self-stabilizing neural network algorithm for principal and minor components extraction
    • Feb. 2012
    • X. Kong, C. Hu, H. Ma, and C. Han, A unified self-stabilizing neural network algorithm for principal and minor components extraction IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 2, pp. 185-198, Feb. 2012.
    • IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.2 , pp. 185-198
    • Kong, X.1    Hu, C.2    Ma, H.3    Han, C.4
  • 14
    • 84875886116 scopus 로고    scopus 로고
    • Efficient online subspace learning with an indefinite kernel for visual tracking and recognition
    • Oct. 2012
    • S. Liwicki, S. Zafeiriou, G. Tzimiropoulos, and M. Pantic, Efficient online subspace learning with an indefinite kernel for visual tracking and recognition IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1624-1636, Oct. 2012.
    • IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.10 , pp. 1624-1636
    • Liwicki, S.1    Zafeiriou, S.2    Tzimiropoulos, G.3    Pantic, M.4
  • 15
  • 16
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Jun. 2003
    • M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput., vol. 15, no. 6, pp. 1373-1396, Jun. 2003.
    • Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 17
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Aug. 2000
    • J. Shi and J. Malik, Normalized cuts and image segmentation IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
    • IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 18
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec. 2000
    • S. Roweis and L. Saul, Nonlinear dimensionality reduction by locally linear embedding Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000.
    • Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 19
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Dec. 2000
    • J. Tenenbaum, V. De Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000.
    • Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    Langford, J.C.3
  • 20
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • K. Q. Weinberger and L. K. Saul, Unsupervised learning of image manifolds by semidefinite programming Int. J. Comput. Vis., vol. 70, no. 1, pp. 77-90, 2006.
    • (2006) Int. J. Comput. Vis. , vol.70 , Issue.1 , pp. 77-90
    • Weinberger, K.Q.1    Saul, L.K.2
  • 21
    • 33750733400 scopus 로고    scopus 로고
    • Spectral methods for dimensionality reduction
    • O. Chapelle, B. Schölkopf, and A. Zien, Eds. Cambridge, MA, USA: MIT Press ch. 1
    • L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, and D. D. Lee, Spectral methods for dimensionality reduction in Semisupervised Learning, O. Chapelle, B. Schölkopf, and A. Zien, Eds. Cambridge, MA, USA: MIT Press, 2005, ch. 1.
    • (2005) Semisupervised Learning
    • Saul, L.K.1    Weinberger, K.Q.2    Ham, J.H.3    Sha, F.4    Lee, D.D.5
  • 23
    • 10044278604 scopus 로고    scopus 로고
    • PCA for gender estimation: Which eigenvectors contribute?
    • K. Balci and V. Atalay, PCA for gender estimation: Which eigenvectors contribute? in Proc. Int. Conf. Pattern Recognit., 2002, pp. 363-366.
    • (2002) Proc. Int. Conf. Pattern Recognit. , pp. 363-366
    • Balci, K.1    Atalay, V.2
  • 25
    • 42449099940 scopus 로고    scopus 로고
    • New routes from minimal approximation error to principal components
    • A. A. Miranda, Y.-a. Borgne, and G. Bontempi, New routes from minimal approximation error to principal components Neural Process. Lett., vol. 27, no. 3, pp. 197-207, 2008.
    • (2008) Neural Process. Lett. , vol.27 , Issue.3 , pp. 197-207
    • Miranda, A.A.1    Borgne, Y.-A.2    Bontempi, G.3
  • 26
    • 70849133998 scopus 로고    scopus 로고
    • On relationships between uncentred and column-centred principal component analysis
    • J. Cadima and I. Jolliffe, On relationships between uncentred and column-centred principal component analysis Pakistan J. Stat., vol. 25, no. 4, pp. 473-503, 2009.
    • (2009) Pakistan J. Stat. , vol.25 , Issue.4 , pp. 473-503
    • Cadima, J.1    Jolliffe, I.2
  • 29
    • 33747080244 scopus 로고    scopus 로고
    • Singular value decomposition of genomescale mRNA lengths distribution reveals asymmetry in RNA gel electrophoresis brand broadening
    • Jul. 2006
    • O. Alter and G. H. Golub, Singular value decomposition of genomescale mRNA lengths distribution reveals asymmetry in RNA gel electrophoresis brand broadening in Proc. Nat. Acad. Sci., vol. 103, no. 32, pp. 11828-11833, Jul. 2006.
    • Proc. Nat. Acad. Sci. , vol.103 , Issue.32 , pp. 11828-11833
    • Alter, O.1    Golub, G.H.2
  • 31
    • 0021084342 scopus 로고
    • Principal components biplots and alpha and beta diversity
    • C. ter Braak, Principal components biplots and alpha and beta diversity Ecology, vol. 64, no. 3, pp. 454-462, 1983.
    • (1983) Ecology , vol.64 , Issue.3 , pp. 454-462
    • Ter Braak, C.1
  • 36
    • 77949873915 scopus 로고    scopus 로고
    • Kernel entropy component analysis
    • May 2010
    • R. Jenssen, Kernel entropy component analysis IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 847-860, May 2010.
    • IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.5 , pp. 847-860
    • Jenssen, R.1
  • 37
    • 73949117460 scopus 로고    scopus 로고
    • Data spectroscopy: Eigenspaces of convolution operators and clustering
    • T. Shi, M. Belkin, and B. Yu, Data spectroscopy: Eigenspaces of convolution operators and clustering Ann. Stat., vol. 37, no. 6, pp. 3960-3984, 2009.
    • (2009) Ann. Stat. , vol.37 , Issue.6 , pp. 3960-3984
    • Shi, T.1    Belkin, M.2    Yu, B.3
  • 38
    • 0032121920 scopus 로고    scopus 로고
    • Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors
    • S. Sarkar and K. L. Boyer, Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors Comput. Vis. Image Understand., vol. 71, no. 1, pp. 110-136, 1998.
    • (1998) Comput. Vis. Image Understand. , vol.71 , Issue.1 , pp. 110-136
    • Sarkar, S.1    Boyer, K.L.2
  • 39
    • 0000296476 scopus 로고    scopus 로고
    • Determining the dimensionality of multidimensional scaling representations for cognitive modeling
    • Feb. 2001
    • M. Lee, Determining the dimensionality of multidimensional scaling representations for cognitive modeling J. Math. Psychol., vol. 45, no. 1, pp. 149-166, Feb. 2001.
    • J. Math. Psychol. , vol.45 , Issue.1 , pp. 149-166
    • Lee, M.1
  • 40
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, Distinctive image features from scale-invariant keypoints Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.