메뉴 건너뛰기




Volumn 37, Issue 6 B, 2009, Pages 3960-3984

Data spectroscopy: Eigenspaces of convolution operators and clustering

Author keywords

Gaussian kernel; Kernel principal component analysis; Spectral clustering; Support vector machines; Unsupervised learning

Indexed keywords


EID: 73949117460     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/09-AOS700     Document Type: Article
Times cited : (78)

References (22)
  • 1
    • 84898946656 scopus 로고    scopus 로고
    • Using manifold structure for partially labeled classification
    • S. Becker, S. Thrun and K. Obermayer, eds, MIT Press, Cambridge, MA
    • BELKIN, M. and NIYOGI, P. (2003). Using manifold structure for partially labeled classification. In Advances in Neural Information Processing Systems (S. Becker, S. Thrun and K. Obermayer, eds.) 15 953-960. MIT Press, Cambridge, MA.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 953-960
    • BELKIN, M.1    NIYOGI, P.2
  • 2
    • 73949101920 scopus 로고    scopus 로고
    • DHILLON, I., GUAN, Y. and KULIS, B. (2005). A unified view of kernel k-means, spectral clustering, and graph partitioning. Technical Report UTCS TF-04-25, Univ. Texas, Austin.
    • DHILLON, I., GUAN, Y. and KULIS, B. (2005). A unified view of kernel k-means, spectral clustering, and graph partitioning. Technical Report UTCS TF-04-25, Univ. Texas, Austin.
  • 3
    • 63449105389 scopus 로고    scopus 로고
    • Horseshoes in multidimensional scaling and kernel methods
    • DIACONIS, P., GOEL, S. and HOLMES, S. (2008). Horseshoes in multidimensional scaling and kernel methods. Ann. Appl. Stat. 2 777-807.
    • (2008) Ann. Appl. Stat , vol.2 , pp. 777-807
    • DIACONIS, P.1    GOEL, S.2    HOLMES, S.3
  • 4
    • 4344709031 scopus 로고    scopus 로고
    • Random matrix approximation of spectra of integral operators
    • MR1781185
    • KOLTCHINSKII, V. and GINÉ, E. (2000). Random matrix approximation of spectra of integral operators. Bernoulli 6 113-167. MR1781185
    • (2000) Bernoulli , vol.6 , pp. 113-167
    • KOLTCHINSKII, V.1    GINÉ, E.2
  • 7
    • 84864061176 scopus 로고    scopus 로고
    • Fundamental limitations of spectral clustering
    • B. Schölkopf, J. Platt and T. Hoffman, eds, MIT Press, Cambridge, MA
    • NADLER, B. and GALUN, M. (2007). Fundamental limitations of spectral clustering. In Advances in Neural Information Processing Systems (B. Schölkopf, J. Platt and T. Hoffman, eds.) 19 1017-1024. MIT Press, Cambridge, MA.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 1017-1024
    • NADLER, B.1    GALUN, M.2
  • 8
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • T. Dietterich, S. Becker and Z. Ghahramani, eds, MIT Press, Cambridge, MA
    • NG, A., JORDAN, M. and WEISS, Y. (2002). On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems (T. Dietterich, S. Becker and Z. Ghahramani, eds.) 14 955-962. MIT Press, Cambridge, MA.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 955-962
    • NG, A.1    JORDAN, M.2    WEISS, Y.3
  • 9
    • 73949134250 scopus 로고    scopus 로고
    • PARLETT, B. N. (1980). The Summetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, NJ. MR0570116
    • PARLETT, B. N. (1980). The Summetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, NJ. MR0570116
  • 12
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • SCHÖLKOPF, B., SMOLA, A. and MÜLLER, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 1299-1319.
    • (1998) Neural Comput , vol.10 , pp. 1299-1319
    • SCHÖLKOPF, B.1    SMOLA, A.2    MÜLLER, K.R.3
  • 15
    • 56449097024 scopus 로고    scopus 로고
    • Data spectroscopy: Learning mixture models using eigenspaces of convolution operators
    • A. McCallum and S. Roweis, eds, Omnipress, Madison, WI
    • SHI, T., BELKIN, M. and YU, B. (2008). Data spectroscopy: Learning mixture models using eigenspaces of convolution operators. In Proceedings of the 25th Annual International Conference on Machine Learning (ICML 2008) (A. McCallum and S. Roweis, eds.) 936-943. Omnipress, Madison, WI.
    • (2008) Proceedings of the 25th Annual International Conference on Machine Learning (ICML 2008) , pp. 936-943
    • SHI, T.1    BELKIN, M.2    YU, B.3
  • 16
    • 73949121861 scopus 로고    scopus 로고
    • VAPNIK, V. (1995). The Nature of Statistical Learning. Springer, New York. MR1367965
    • VAPNIK, V. (1995). The Nature of Statistical Learning. Springer, New York. MR1367965
  • 17
    • 34547404361 scopus 로고    scopus 로고
    • A comparison of spectral clustering algorithms
    • Technical report, Univ. Washington Computer Science and Engineering
    • VERMA, D. and MEILA, M. (2001). A comparison of spectral clustering algorithms. Technical report, Univ. Washington Computer Science and Engineering.
    • (2001)
    • VERMA, D.1    MEILA, M.2
  • 18
    • 34548583274 scopus 로고    scopus 로고
    • A turorial on spectral clustering
    • MR2409803
    • VON LUXBURG, U. (2007). A turorial on spectral clustering. Stat. Comput. 17 395-416. MR2409803
    • (2007) Stat. Comput , vol.17 , pp. 395-416
    • VON LUXBURG, U.1
  • 19
    • 51049104834 scopus 로고    scopus 로고
    • Consistency of spectral clustering
    • MR2396807
    • VON LUXBURG, U., BELKIN, M. and BOUSQUET, O. (2008). Consistency of spectral clustering. Ann. Statist. 36 555-586. MR2396807
    • (2008) Ann. Statist , vol.36 , pp. 555-586
    • VON LUXBURG, U.1    BELKIN, M.2    BOUSQUET, O.3
  • 21
    • 0039722607 scopus 로고    scopus 로고
    • The effect of the input density distribution on kernel-based classifiers
    • P. Langley, ed, Morgan Kaufmann, San Francisco, CA
    • WILLIAMS, C. K. and SEEGER, M. (2000). The effect of the input density distribution on kernel-based classifiers. In Proceedings of the 17th International Conference on Machine Learning (P. Langley, ed.) 1159-1166. Morgan Kaufmann, San Francisco, CA.
    • (2000) Proceedings of the 17th International Conference on Machine Learning , pp. 1159-1166
    • WILLIAMS, C.K.1    SEEGER, M.2
  • 22
    • 0039813137 scopus 로고    scopus 로고
    • Gaussian regression and optimal finite-dimensional linear models
    • C. Bishop, ed, Springer, Berlin
    • ZHU, H., WILLIAMS, C., ROHWER, R. and MORCINIE, M. (1998). Gaussian regression and optimal finite-dimensional linear models. In Neural Networks and Machine Learning (C. Bishop, ed.) 167-184. Springer, Berlin.
    • (1998) Neural Networks and Machine Learning , pp. 167-184
    • ZHU, H.1    WILLIAMS, C.2    ROHWER, R.3    MORCINIE, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.