-
1
-
-
84898946656
-
Using manifold structure for partially labeled classification
-
S. Becker, S. Thrun and K. Obermayer, eds, MIT Press, Cambridge, MA
-
BELKIN, M. and NIYOGI, P. (2003). Using manifold structure for partially labeled classification. In Advances in Neural Information Processing Systems (S. Becker, S. Thrun and K. Obermayer, eds.) 15 953-960. MIT Press, Cambridge, MA.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 953-960
-
-
BELKIN, M.1
NIYOGI, P.2
-
2
-
-
73949101920
-
-
DHILLON, I., GUAN, Y. and KULIS, B. (2005). A unified view of kernel k-means, spectral clustering, and graph partitioning. Technical Report UTCS TF-04-25, Univ. Texas, Austin.
-
DHILLON, I., GUAN, Y. and KULIS, B. (2005). A unified view of kernel k-means, spectral clustering, and graph partitioning. Technical Report UTCS TF-04-25, Univ. Texas, Austin.
-
-
-
-
3
-
-
63449105389
-
Horseshoes in multidimensional scaling and kernel methods
-
DIACONIS, P., GOEL, S. and HOLMES, S. (2008). Horseshoes in multidimensional scaling and kernel methods. Ann. Appl. Stat. 2 777-807.
-
(2008)
Ann. Appl. Stat
, vol.2
, pp. 777-807
-
-
DIACONIS, P.1
GOEL, S.2
HOLMES, S.3
-
4
-
-
4344709031
-
Random matrix approximation of spectra of integral operators
-
MR1781185
-
KOLTCHINSKII, V. and GINÉ, E. (2000). Random matrix approximation of spectra of integral operators. Bernoulli 6 113-167. MR1781185
-
(2000)
Bernoulli
, vol.6
, pp. 113-167
-
-
KOLTCHINSKII, V.1
GINÉ, E.2
-
5
-
-
0000494466
-
Handwritten digit recognition with a backpropogation network
-
D. Touretzky, ed, Morgan Kaufman, Denver, CO
-
LE CUN, Y., BOSER, B., DENKER, J., HENDERSON, D., HOWARD, R., HUBBARD, W. and JACKEL, L. (1990). Handwritten digit recognition with a backpropogation network. In Advances in Neural Information Processing Systems (D. Touretzky, ed.) 2. Morgan Kaufman, Denver, CO.
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
-
-
LE CUN, Y.1
BOSER, B.2
DENKER, J.3
HENDERSON, D.4
HOWARD, R.5
HUBBARD, W.6
JACKEL, L.7
-
6
-
-
0035358181
-
Contour and texture analysis for image segmentation
-
MALIK, J., BELONGIE, S., LEUNG, T. and SHI, J. (2001). Contour and texture analysis for image segmentation. International Journal of Computer Vision 43 7-27.
-
(2001)
International Journal of Computer Vision
, vol.43
, pp. 7-27
-
-
MALIK, J.1
BELONGIE, S.2
LEUNG, T.3
SHI, J.4
-
7
-
-
84864061176
-
Fundamental limitations of spectral clustering
-
B. Schölkopf, J. Platt and T. Hoffman, eds, MIT Press, Cambridge, MA
-
NADLER, B. and GALUN, M. (2007). Fundamental limitations of spectral clustering. In Advances in Neural Information Processing Systems (B. Schölkopf, J. Platt and T. Hoffman, eds.) 19 1017-1024. MIT Press, Cambridge, MA.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 1017-1024
-
-
NADLER, B.1
GALUN, M.2
-
8
-
-
84899013108
-
On spectral clustering: Analysis and an algorithm
-
T. Dietterich, S. Becker and Z. Ghahramani, eds, MIT Press, Cambridge, MA
-
NG, A., JORDAN, M. and WEISS, Y. (2002). On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems (T. Dietterich, S. Becker and Z. Ghahramani, eds.) 14 955-962. MIT Press, Cambridge, MA.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 955-962
-
-
NG, A.1
JORDAN, M.2
WEISS, Y.3
-
9
-
-
73949134250
-
-
PARLETT, B. N. (1980). The Summetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, NJ. MR0570116
-
PARLETT, B. N. (1980). The Summetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, NJ. MR0570116
-
-
-
-
12
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
SCHÖLKOPF, B., SMOLA, A. and MÜLLER, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 1299-1319.
-
(1998)
Neural Comput
, vol.10
, pp. 1299-1319
-
-
SCHÖLKOPF, B.1
SMOLA, A.2
MÜLLER, K.R.3
-
15
-
-
56449097024
-
Data spectroscopy: Learning mixture models using eigenspaces of convolution operators
-
A. McCallum and S. Roweis, eds, Omnipress, Madison, WI
-
SHI, T., BELKIN, M. and YU, B. (2008). Data spectroscopy: Learning mixture models using eigenspaces of convolution operators. In Proceedings of the 25th Annual International Conference on Machine Learning (ICML 2008) (A. McCallum and S. Roweis, eds.) 936-943. Omnipress, Madison, WI.
-
(2008)
Proceedings of the 25th Annual International Conference on Machine Learning (ICML 2008)
, pp. 936-943
-
-
SHI, T.1
BELKIN, M.2
YU, B.3
-
16
-
-
73949121861
-
-
VAPNIK, V. (1995). The Nature of Statistical Learning. Springer, New York. MR1367965
-
VAPNIK, V. (1995). The Nature of Statistical Learning. Springer, New York. MR1367965
-
-
-
-
17
-
-
34547404361
-
A comparison of spectral clustering algorithms
-
Technical report, Univ. Washington Computer Science and Engineering
-
VERMA, D. and MEILA, M. (2001). A comparison of spectral clustering algorithms. Technical report, Univ. Washington Computer Science and Engineering.
-
(2001)
-
-
VERMA, D.1
MEILA, M.2
-
18
-
-
34548583274
-
A turorial on spectral clustering
-
MR2409803
-
VON LUXBURG, U. (2007). A turorial on spectral clustering. Stat. Comput. 17 395-416. MR2409803
-
(2007)
Stat. Comput
, vol.17
, pp. 395-416
-
-
VON LUXBURG, U.1
-
19
-
-
51049104834
-
Consistency of spectral clustering
-
MR2396807
-
VON LUXBURG, U., BELKIN, M. and BOUSQUET, O. (2008). Consistency of spectral clustering. Ann. Statist. 36 555-586. MR2396807
-
(2008)
Ann. Statist
, vol.36
, pp. 555-586
-
-
VON LUXBURG, U.1
BELKIN, M.2
BOUSQUET, O.3
-
21
-
-
0039722607
-
The effect of the input density distribution on kernel-based classifiers
-
P. Langley, ed, Morgan Kaufmann, San Francisco, CA
-
WILLIAMS, C. K. and SEEGER, M. (2000). The effect of the input density distribution on kernel-based classifiers. In Proceedings of the 17th International Conference on Machine Learning (P. Langley, ed.) 1159-1166. Morgan Kaufmann, San Francisco, CA.
-
(2000)
Proceedings of the 17th International Conference on Machine Learning
, pp. 1159-1166
-
-
WILLIAMS, C.K.1
SEEGER, M.2
-
22
-
-
0039813137
-
Gaussian regression and optimal finite-dimensional linear models
-
C. Bishop, ed, Springer, Berlin
-
ZHU, H., WILLIAMS, C., ROHWER, R. and MORCINIE, M. (1998). Gaussian regression and optimal finite-dimensional linear models. In Neural Networks and Machine Learning (C. Bishop, ed.) 167-184. Springer, Berlin.
-
(1998)
Neural Networks and Machine Learning
, pp. 167-184
-
-
ZHU, H.1
WILLIAMS, C.2
ROHWER, R.3
MORCINIE, M.4
|