-
1
-
-
85013370154
-
Border rank of a p×q×2 tensor and the optimal approximation of a pair of bilinear forms
-
Lecture notes in computer science, J. W. Bakkerde and J. Leeuwenvan (Eds.), New York: Springer
-
Bini, D. (1980). Border rank of a p×q×2 tensor and the optimal approximation of a pair of bilinear forms. In J. W. de Bakker & J. van Leeuwen (Eds.), Lecture notes in computer science: Vol. 85. Automata, languages and programming (pp. 98-108). New York: Springer.
-
(1980)
Automata, Languages and Programming
, vol.85
, pp. 98-108
-
-
Bini, D.1
-
2
-
-
34250499792
-
Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition
-
Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283-319.
-
(1970)
Psychometrika
, vol.35
, pp. 283-319
-
-
Carroll, J.D.1
Chang, J.J.2
-
3
-
-
0001859672
-
Orthogonal rotation to congruence
-
Cliff, N. (1966). Orthogonal rotation to congruence. Psychometrika, 31, 33-42.
-
(1966)
Psychometrika
, vol.31
, pp. 33-42
-
-
Cliff, N.1
-
4
-
-
55349142218
-
Tensor rank and the ill-posedness of the best low-rank approximation problem
-
De Silva, V., & Lim, L.-H. (2008). Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM Journal on Matrix Analysis and Applications, 30, 1084-1127.
-
(2008)
SIAM Journal on Matrix Analysis and Applications
, vol.30
, pp. 1084-1127
-
-
De Silva, V.1
Lim, L.-H.2
-
6
-
-
0001952507
-
A simple estimate of the condition number of a linear system
-
Guggenheimer, H. W., Edelman, A. S., & Johnson, C. R. (1995). A simple estimate of the condition number of a linear system. The College Mathematics Journal, 26, 2-5.
-
(1995)
The College Mathematics Journal
, vol.26
, pp. 2-5
-
-
Guggenheimer, H.W.1
Edelman, A.S.2
Johnson, C.R.3
-
8
-
-
0002549412
-
An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques
-
H. G. Law, C. W. SnyderJr., J. A. Hattie, and R. P. McDonald (Eds.), New York: Praeger
-
Harshman, R. A., & De Sarbo, W. S. (1984). An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques. In H. G. Law, C. W. Snyder Jr., J. A. Hattie, & R. P. McDonald (Eds.), Research methods for multimode data analysis (pp. 602-642). New York: Praeger.
-
(1984)
Research Methods for Multimode Data Analysis
, pp. 602-642
-
-
Harshman, R.A.1
De Sarbo, W.S.2
-
9
-
-
0002549412
-
Data preprocessing and the extended PARAFAC model
-
H. G. Law, C. W. SnyderJr., J. A. Hattie, and R. P. McDonald (Eds.), New York: Praeger
-
Harshman, R. A., & Lundy, M. E. (1984). Data preprocessing and the extended PARAFAC model. In H. G. Law, C. W. Snyder Jr., J. A. Hattie, & R. P. McDonald (Eds.), Research methods for multimode data analysis (pp. 216-284). New York: Praeger.
-
(1984)
Research Methods for Multimode Data Analysis
, pp. 216-284
-
-
Harshman, R.A.1
Lundy, M.E.2
-
10
-
-
4344616103
-
Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints
-
Jiang, T., & Sidiropoulos, N. D. (2004). Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints. IEEE Transactions on Signal Processing, 52, 2625-2636.
-
(2004)
IEEE Transactions on Signal Processing
, vol.52
, pp. 2625-2636
-
-
Jiang, T.1
Sidiropoulos, N.D.2
-
11
-
-
33750290333
-
Convergence of the sequence of parameters generated by alternating least squares algorithms
-
Krijnen, W. P. (2006). Convergence of the sequence of parameters generated by alternating least squares algorithms. Computational Statistics & Data Analysis, 51, 481-489.
-
(2006)
Computational Statistics & Data Analysis
, vol.51
, pp. 481-489
-
-
Krijnen, W.P.1
-
12
-
-
52949104087
-
On the non-existence of optimal solutions and the occurrence of "degeneracy" in the Candecomp/Parafac model
-
Krijnen, W. P., Dijkstra, T. K., & Stegeman, A. (2008). On the non-existence of optimal solutions and the occurrence of "degeneracy" in the Candecomp/Parafac model. Psychometrika, 73, 431-439.
-
(2008)
Psychometrika
, vol.73
, pp. 431-439
-
-
Krijnen, W.P.1
Dijkstra, T.K.2
Stegeman, A.3
-
13
-
-
48749101457
-
Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics
-
Kruskal, J. B. (1977). Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics. Linear Algebra and Its Applications, 18, 95-138.
-
(1977)
Linear Algebra and Its Applications
, vol.18
, pp. 95-138
-
-
Kruskal, J.B.1
-
14
-
-
0003052447
-
How 3-MFA data can cause degenerate PARAFAC solutions, among other relationships
-
R. Coppi and S. Bolasco (Eds.), Amsterdam: Elsevier
-
Kruskal, J. B., Harshman, R. A., & Lundy, M. E. (1989). How 3-MFA data can cause degenerate PARAFAC solutions, among other relationships. In R. Coppi & S. Bolasco (Eds.), Multiway data analysis (pp. 115-122). Amsterdam: Elsevier.
-
(1989)
Multiway Data Analysis
, pp. 115-122
-
-
Kruskal, J.B.1
Harshman, R.A.2
Lundy, M.E.3
-
16
-
-
0000921039
-
Cross-validation of multiway component models
-
Louwerse, D. J., Smilde, A. K., & Kiers, H. A. L. (1999). Cross-validation of multiway component models. Journal of Chemometrics, 13, 491-510.
-
(1999)
Journal of Chemometrics
, vol.13
, pp. 491-510
-
-
Louwerse, D.J.1
Smilde, A.K.2
Kiers, H.A.L.3
-
17
-
-
0006783942
-
A two stage procedure incorporating good features of both trilinear and quadrilinear models
-
R. Coppi and S. Bolasco (Eds.), Amsterdam: Elsevier
-
Lundy, M. E., Harshman, R. A., & Kruskal, J. B. (1989). A two stage procedure incorporating good features of both trilinear and quadrilinear models. In R. Coppi & S. Bolasco (Eds.), Multiway data analysis (pp. 123-130). Amsterdam: Elsevier.
-
(1989)
Multiway Data Analysis
, pp. 123-130
-
-
Lundy, M.E.1
Harshman, R.A.2
Kruskal, J.B.3
-
18
-
-
0040453624
-
A best upper bound for the 2-norm condition number of a matrix
-
Merikoski, J. K., Urpala, U., Virtanen, A., Tam, T.-Y., & Uhlig, F. (1997). A best upper bound for the 2-norm condition number of a matrix. Linear Algebra and Its Applications, 254, 355-365.
-
(1997)
Linear Algebra and Its Applications
, vol.254
, pp. 355-365
-
-
Merikoski, J.K.1
Urpala, U.2
Virtanen, A.3
Tam, T.-Y.4
Uhlig, F.5
-
19
-
-
84984320741
-
Slowly converging Parafac sequences: swamps and two-factor degeneracies
-
Mitchell, B. C., & Burdick, D. S. (1994). Slowly converging Parafac sequences: swamps and two-factor degeneracies. Journal of Chemometrics, 8, 155-168.
-
(1994)
Journal of Chemometrics
, vol.8
, pp. 155-168
-
-
Mitchell, B.C.1
Burdick, D.S.2
-
21
-
-
0033653782
-
Construction and analysis of degenerate Parafac models
-
Paatero, P. (2000). Construction and analysis of degenerate Parafac models. Journal of Chemometrics, 14, 285-299.
-
(2000)
Journal of Chemometrics
, vol.14
, pp. 285-299
-
-
Paatero, P.1
-
23
-
-
77049124762
-
A weak degeneracy revealing decomposition for the CANDECOMP/PARAFAC model
-
Rocci, R., & Giordani, P. (2010). A weak degeneracy revealing decomposition for the CANDECOMP/PARAFAC model. Journal of Chemometrics, 24, 57-66.
-
(2010)
Journal of Chemometrics
, vol.24
, pp. 57-66
-
-
Rocci, R.1
Giordani, P.2
-
24
-
-
33751214191
-
Degeneracy in Candecomp/Parafac explained for p×p×2 arrays of rank p+1 or higher
-
Stegeman, A. (2006). Degeneracy in Candecomp/Parafac explained for p×p×2 arrays of rank p+1 or higher. Psychometrika, 71, 483-501.
-
(2006)
Psychometrika
, vol.71
, pp. 483-501
-
-
Stegeman, A.1
-
25
-
-
38949176012
-
Degeneracy in Candecomp/Parafac and Indscal explained for several three-sliced arrays with a two-valued typical rank
-
Stegeman, A. (2007). Degeneracy in Candecomp/Parafac and Indscal explained for several three-sliced arrays with a two-valued typical rank. Psychometrika, 72, 601-619.
-
(2007)
Psychometrika
, vol.72
, pp. 601-619
-
-
Stegeman, A.1
-
26
-
-
52949146687
-
Low-rank approximation of generic p×q×2 arrays and diverging components in the Candecomp/Parafac model
-
Stegeman, A. (2008). Low-rank approximation of generic p×q×2 arrays and diverging components in the Candecomp/Parafac model. SIAM Journal on Matrix Analysis and Applications, 30, 988-1007.
-
(2008)
SIAM Journal on Matrix Analysis and Applications
, vol.30
, pp. 988-1007
-
-
Stegeman, A.1
-
27
-
-
65049083795
-
On uniqueness conditions for Candecomp/Parafac and Indscal with full column rank in one mode
-
Stegeman, A. (2009a). On uniqueness conditions for Candecomp/Parafac and Indscal with full column rank in one mode. Linear Algebra and Its Applications, 431, 211-227.
-
(2009)
Linear Algebra and Its Applications
, vol.431
, pp. 211-227
-
-
Stegeman, A.1
-
28
-
-
70349658465
-
Using the simultaneous generalized Schur decomposition as a Candecomp/Parafac algorithm for ill-conditioned data
-
Stegeman, A. (2009b). Using the simultaneous generalized Schur decomposition as a Candecomp/Parafac algorithm for ill-conditioned data. Journal of Chemometrics, 23, 385-392.
-
(2009)
Journal of Chemometrics
, vol.23
, pp. 385-392
-
-
Stegeman, A.1
-
29
-
-
33746359652
-
Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices
-
Stegeman, A., Ten Berge, J. M. F., & De Lathauwer, L. (2006). Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices. Psychometrika, 71, 219-229.
-
(2006)
Psychometrika
, vol.71
, pp. 219-229
-
-
Stegeman, A.1
Ten Berge, J.M.F.2
De Lathauwer, L.3
-
30
-
-
68649114427
-
Candecomp/Parafac: from diverging components to a decomposition in block terms
-
Stegeman, A. (2012). Candecomp/Parafac: from diverging components to a decomposition in block terms. SIAM Journal on Matrix Analysis and Applications, 30, 1614-1638.
-
(2012)
SIAM Journal on Matrix Analysis and Applications
, vol.30
, pp. 1614-1638
-
-
Stegeman, A.1
-
31
-
-
68649114427
-
A method to avoid diverging components in the Candecomp/Parafac model for generic I×J×2 arrays
-
Stegeman, A., & De Lathauwer, L. (2009). A method to avoid diverging components in the Candecomp/Parafac model for generic I×J×2 arrays. SIAM Journal on Matrix Analysis and Applications, 30, 1614-1638.
-
(2009)
SIAM Journal on Matrix Analysis and Applications
, vol.30
, pp. 1614-1638
-
-
Stegeman, A.1
De Lathauwer, L.2
-
32
-
-
0001501795
-
Hadamard products and multivariate statistical analysis
-
Styan, G. P. H. (1973). Hadamard products and multivariate statistical analysis. Linear Algebra and Its Applications, 6, 217-240.
-
(1973)
Linear Algebra and Its Applications
, vol.6
, pp. 217-240
-
-
Styan, G.P.H.1
-
33
-
-
0001158675
-
Explicit Candecomp/Parafac solutions for a contrived 2×2×2 array of rank three
-
ten Berge, J. M. F., Kiers, H. A. L., & De Leeuw, J. (1988). Explicit Candecomp/Parafac solutions for a contrived 2×2×2 array of rank three. Psychometrika, 53, 579-584.
-
(1988)
Psychometrika
, vol.53
, pp. 579-584
-
-
ten Berge, J.M.F.1
Kiers, H.A.L.2
De Leeuw, J.3
-
35
-
-
30144444694
-
A comparison of algorithms for fitting the PARAFAC model
-
Tomasi, G., & Bro, G. (2006). A comparison of algorithms for fitting the PARAFAC model. Computational Statistics & Data Analysis, 50, 1700-1734.
-
(2006)
Computational Statistics & Data Analysis
, vol.50
, pp. 1700-1734
-
-
Tomasi, G.1
Bro, G.2
|