-
1
-
-
0004156798
-
-
(2nd ed.). New York: Wiley
-
Apostol, T.M. (1969). Calculus (Vol. II, 2nd ed.). New York: Wiley.
-
(1969)
Calculus
, vol.2
-
-
Apostol, T.M.1
-
2
-
-
34250499792
-
Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition
-
Carroll, J.D., & Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283-319.
-
(1970)
Psychometrika
, vol.35
, pp. 283-319
-
-
Carroll, J.D.1
Chang, J.J.2
-
3
-
-
0002740437
-
Foundations of the Parafac procedure: Models and conditions for an "explanatory" multimodal factor analysis
-
Harshman, R.A. (1970). Foundations of the Parafac procedure: Models and conditions for an "explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1-84.
-
(1970)
UCLA Working Papers in Phonetics
, vol.16
, pp. 1-84
-
-
Harshman, R.A.1
-
4
-
-
84865492024
-
The problem and nature of degenerate solutions or decompositions of 3-way arrays
-
Talk at the, July 19-23. Palo Alto, CA: AIM
-
Harshman, R.A. (2004). The problem and nature of degenerate solutions or decompositions of 3-way arrays. Talk at the Tensor Decompositions Workshop, July 19-23. Palo Alto, CA: AIM.
-
(2004)
Tensor Decompositions Workshop
-
-
Harshman, R.A.1
-
5
-
-
0002549412
-
Data preprocessing and the extended Parafac model
-
H.G. Law, C.W. Snyder Jr., J.A. Hattie, & R.P. McDonald (Ed.). New York: Praeger
-
Harshman, R.A., & Lundy, M.E. (1984). Data preprocessing and the extended Parafac model. In H.G. Law, C.W. Snyder Jr., J.A. Hattie, & R.P. McDonald (Ed.), Research methods for multimode data analysis (pp. 216-284). New York: Praeger.
-
(1984)
Research Methods for Multimode Data Analysis
, pp. 216-284
-
-
Harshman, R.A.1
Lundy, M.E.2
-
6
-
-
1642323297
-
Optimal evaluation of pairs of bilinear forms
-
Ja' Ja', J. (1979). Optimal evaluation of pairs of bilinear forms. SIAM Journal on Computing, 8, 443-462.
-
(1979)
SIAM Journal on Computing
, vol.8
, pp. 443-462
-
-
Ja'Ja, J.1
-
8
-
-
48749101457
-
Three-way arrays: Rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics
-
Kruskal, J.B. (1977). Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics. Linear Algebra and its Applications, 18, 95-138.
-
(1977)
Linear Algebra and Its Applications
, vol.18
, pp. 95-138
-
-
Kruskal, J.B.1
-
9
-
-
0001837391
-
Rank, decomposition, and uniqueness for 3-way and W-way arrays
-
Coppi R. & Bolasco, S. (Eds.). Amsterdam: North-Holland
-
Kruskal, J.B. (1989). Rank, decomposition, and uniqueness for 3-way and W-way arrays. In Coppi R. & Bolasco, S. (Eds.). Multiway data analysis (pp. 7-18). Amsterdam: North-Holland.
-
(1989)
Multiway Data Analysis
, pp. 7-18
-
-
Kruskal, J.B.1
-
10
-
-
0003052447
-
How 3-MFA data can cause degenerate Parafac solutions, among other relationships
-
Coppi R. & Bolasco, S. (Eds.). Amsterdam: North-Holland
-
Kruskal, J.B., Harshman, R.A., & Lundy, M.E. (1989). How 3-MFA data can cause degenerate Parafac solutions, among other relationships. In Coppi R. & Bolasco, S. (Eds.). Multiway data analysis (pp. 115-121). Amsterdam: North-Holland.
-
(1989)
Multiway Data Analysis
, pp. 115-121
-
-
Kruskal, J.B.1
Harshman, R.A.2
Lundy, M.E.3
-
11
-
-
33751237336
-
Optimal solutions to non-negative Parafac/multilinear NMF always exist
-
Talk at the, August 29 - September 2. Marseille: CIRM, Luminy
-
Lim, L.-H. (2005). Optimal solutions to non-negative Parafac/multilinear NMF always exist. Talk at the Workshop on Tensor Decompositions and Applications, August 29 - September 2. Marseille: CIRM, Luminy.
-
(2005)
Workshop on Tensor Decompositions and Applications
-
-
Lim, L.-H.1
-
12
-
-
84984320741
-
Slowly converging Parafac sequences: Swamps and two-factor degeneracies
-
Mitchell, B.C., & Burdick, D.S. (1994). Slowly converging Parafac sequences: Swamps and two-factor degeneracies. Journal of Chemometrics, 8, 155-168.
-
(1994)
Journal of Chemometrics
, vol.8
, pp. 155-168
-
-
Mitchell, B.C.1
Burdick, D.S.2
-
13
-
-
0033275630
-
The multilinear engine - A table-driven least squares program for solving multilinear problems, including the n-way parallel factor analysis model
-
Paatero, P. (1999). The multilinear engine - A table-driven least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational and Graphical Statistics, 8, 854-888.
-
(1999)
Journal of Computational and Graphical Statistics
, vol.8
, pp. 854-888
-
-
Paatero, P.1
-
14
-
-
0033653782
-
Construction and analysis of degenerate Parafac models
-
Paatero, P. (2000). Construction and analysis of degenerate Parafac models. Journal of Chemometrics, 14, 285-299.
-
(2000)
Journal of Chemometrics
, vol.14
, pp. 285-299
-
-
Paatero, P.1
-
18
-
-
84860029433
-
-
Technical Report. Department of Psychology, University of Groningen, Groningen, The Netherlands. Submitted
-
Stegeman, A. (2005a). Degeneracy in Candecomp/Parafac explained for random p × q × 2 arrays. Technical Report. Department of Psychology, University of Groningen, Groningen, The Netherlands. Submitted.
-
(2005)
Degeneracy in Candecomp/Parafac Explained for Random P × Q × 2 Arrays
-
-
Stegeman, A.1
-
20
-
-
0000020580
-
Kruskal's polynomial for 2 × 2 × 2 arrays and a generalization to 2 ×. n ×. n arrays
-
Ten Berge, J.M.F (1991). Kruskal's polynomial for 2 × 2 × 2 arrays and a generalization to 2 ×. n ×. n arrays. Psychometrika, 56, 631-636.
-
(1991)
Psychometrika
, vol.56
, pp. 631-636
-
-
Ten Berge, J.M.F.1
-
21
-
-
2642580865
-
Partial uniqueness in Candecomp/Parafac
-
Ten Berge, J.M.F. (2004). Partial uniqueness in Candecomp/Parafac. Journal of Chemometrics, 18, 12-16.
-
(2004)
Journal of Chemometrics
, vol.18
, pp. 12-16
-
-
Ten Berge, J.M.F.1
-
22
-
-
0041595584
-
Simplicity of core arrays in three-way principal component analysis and the typical rank of p × q × 2 arrays
-
Ten Berge, J.M.F., & Kiers, H.A.L. (1999). Simplicity of core arrays in three-way principal component analysis and the typical rank of p × q × 2 arrays. Linear Algebra and its Applications, 294, 169-179.
-
(1999)
Linear Algebra and Its Applications
, vol.294
, pp. 169-179
-
-
Ten Berge, J.M.F.1
Kiers, H.A.L.2
-
23
-
-
0001158675
-
Explicit Candecomp/Parafac solutions for a contrived 2 × 2 × 2 array of rank three
-
Ten Berge, J.M.E, Kiers, H.A.L., & De Leeuw, J. (1988). Explicit Candecomp/Parafac solutions for a contrived 2 × 2 × 2 array of rank three. Psychometrika, 53, 579-584.
-
(1988)
Psychometrika
, vol.53
, pp. 579-584
-
-
Ten Berge, J.M.E.1
Kiers, H.A.L.2
De Leeuw, J.3
-
24
-
-
0013953617
-
Some mathematical notes on three-mode factor analysis
-
Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279-311.
-
(1966)
Psychometrika
, vol.31
, pp. 279-311
-
-
Tucker, L.R.1
-
25
-
-
0036858783
-
Degenerate solutions obtained from several variants of factor analysis
-
Zijlstra, B.J.H., & Kiers, H.A.L. (2002). Degenerate solutions obtained from several variants of factor analysis. Journal of Chemometrics, 16, 596-605.
-
(2002)
Journal of Chemometrics
, vol.16
, pp. 596-605
-
-
Zijlstra, B.J.H.1
Kiers, H.A.L.2
|