-
1
-
-
34250499792
-
Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition
-
Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika 1970; 35: 283-319.
-
(1970)
Psychometrika
, vol.35
, pp. 283-319
-
-
Carroll, J.D.1
Chang, J.J.2
-
2
-
-
0002740437
-
Foundations of the Parafac procedure: Models and conditions for an 'explanatory' multimodal factor analysis
-
Harshman RA. Foundations of the Parafac procedure: models and conditions for an 'explanatory' multimodal factor analysis. UCLA Work. Pap. Phon. 1970; 16: 1-84.
-
(1970)
Ucla Work. Pap. Phon
, vol.16
, pp. 1-84
-
-
Harshman, R.A.1
-
3
-
-
48749101457
-
Three-way arrays: Rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics
-
Kruskal JB. Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics. Linear Algebra Appl. 1977; 18: 95-138.
-
(1977)
Linear Algebra Appl
, vol.18
, pp. 95-138
-
-
Kruskal, J.B.1
-
4
-
-
0036934940
-
Non-triviality and identification of a constrained Tucker3 analysis
-
ten Berge JMF, Smilde AK. Non-triviality and identification of a constrained Tucker3 analysis. J. Chemom. 2002; 16: 609-612.
-
(2002)
J. Chemom
, vol.16
, pp. 609-612
-
-
ten Berge, J.M.F.1
Smilde, A.K.2
-
6
-
-
84976979805
-
A constrained PARAFAC method for positive manifold data
-
Krijnen WP, Ten Berge JMF. A constrained PARAFAC method for positive manifold data. Appl. Psychol. Meas. 1992; 16: 295-305.
-
(1992)
Appl. Psychol. Meas
, vol.16
, pp. 295-305
-
-
Krijnen, W.P.1
ten Berge, J.M.F.2
-
7
-
-
0002549412
-
An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques
-
In, Law HG, Snyder CW Jr, Hattie J, McDonald RP (eds), Praeger: New York
-
Harshman RA, DeSarbo WS. An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques. In Research Methods for Multi-mode Data Analysis, Law HG, Snyder CW Jr, Hattie J, McDonald RP (eds). Praeger: New York, 1984; 602-642.
-
(1984)
Research Methods For Multi-mode Data Analysis
, pp. 602-642
-
-
Harshman, R.A.1
Desarbo, W.S.2
-
9
-
-
2942597622
-
Structure-seeking multilinear methods for the analysis of fMRI data
-
Andersen AH, Rayens WS. Structure-seeking multilinear methods for the analysis of fMRI data. NeuroImage 2004; 22: 728-739.
-
(2004)
Neuroimage
, vol.22
, pp. 728-739
-
-
Andersen, A.H.1
Rayens, W.S.2
-
10
-
-
52949104087
-
On the non-existence of optimal solutions and the occurrence of 'degeneracy' in the Candecomp/ Parafac model
-
Krijnen WP, Dijkstra TK, Stegeman A. On the non-existence of optimal solutions and the occurrence of 'degeneracy' in the Candecomp/ Parafac model. Psychometrika 2008; 73: 431-439.
-
(2008)
Psychometrika
, vol.73
, pp. 431-439
-
-
Krijnen, W.P.1
Dijkstra, T.K.2
Stegeman, A.3
-
11
-
-
0002258223
-
Data preprocessing and the extended PARAFAC model
-
Law HG, Snyder CW Jr, Hattie J, McDonald RP (eds), Praeger: New York
-
Harshman RA, Lundy ME. Data preprocessing and the extended PARAFAC model. In Research Methods for Multimode Data Analysis, Law HG, Snyder CW Jr, Hattie J, McDonald RP (eds). Praeger: New York, 1984; 216-284.
-
(1984)
Research Methods For Multimode Data Analysis
, pp. 216-284
-
-
Harshman, R.A.1
Lundy, M.E.2
-
12
-
-
0013953617
-
Some mathematical notes on three-mode factor analysis
-
Tucker LR. Some mathematical notes on three-mode factor analysis. Psychometrika 1966; 31: 279-311.
-
(1966)
Psychometrika
, vol.31
, pp. 279-311
-
-
Tucker, L.R.1
-
13
-
-
0006783942
-
A two stage procedure incorporating good features of both trilinear and quadrilinear models
-
Coppi R, Bolasco S (eds), Elsevier: Amsterdam
-
Lundy ME, Harshman RA, Kruskal JB. A two stage procedure incorporating good features of both trilinear and quadrilinear models. In Multiway Data Analysis, Coppi R, Bolasco S (eds). Elsevier: Amsterdam, 1989; 123-130.
-
(1989)
Multiway Data Analysis
, pp. 123-130
-
-
Lundy, M.E.1
Harshman, R.A.2
Kruskal, J.B.3
-
14
-
-
0001837391
-
Rank decomposition, and uniqueness for 3-way and N-way arrays
-
Coppi R, Bolasco S (eds), Elsevier: Amsterdam
-
Kruskal JB, Rank decomposition, and uniqueness for 3-way and N-way arrays. In Multiway Data Analysis, Coppi R, Bolasco S (eds). Elsevier: Amsterdam, 1989; 7-18.
-
(1989)
Multiway Data Analysis
, pp. 7-18
-
-
Kruskal, J.B.1
-
15
-
-
30144444694
-
A comparison of algorithms for fitting the PARAFAC model
-
Tomasi G, Bro G. A comparison of algorithms for fitting the PARAFAC model. Comput. Stat. Data Anal. 2006; 50: 1700-1734.
-
(2006)
Comput. Stat. Data Anal
, vol.50
, pp. 1700-1734
-
-
Tomasi, G.1
Bro, G.2
-
16
-
-
33746356349
-
A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization
-
De Lathauwer L. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 2006; 28: 642-666.
-
(2006)
Siam J. Matrix Anal. Appl
, vol.28
, pp. 642-666
-
-
de Lathauwer, L.1
-
17
-
-
4344616103
-
Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints
-
Jiang T, Sidiropoulos ND. Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints. IEEE Transactions on Signal Processing 2004; 52: 2625-2636.
-
(2004)
Ieee Transactions On Signal Processing
, vol.52
, pp. 2625-2636
-
-
Jiang, T.1
Sidiropoulos, N.D.2
-
18
-
-
33746359652
-
Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices
-
Stegeman A, Ten Berge JMF, De Lathauwer L. Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices. Psychometrika 2006; 71: 219-229.
-
(2006)
Psychometrika
, vol.71
, pp. 219-229
-
-
Stegeman, A.1
ten Berge, J.M.F.2
de Lathauwer, L.3
-
19
-
-
55349142218
-
Tensor rank and the ill-posedness of the best low-rank approximation problem
-
De Silva V, Lim L-H. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 2008; 30: 1084-1127.
-
(2008)
Siam J. Matrix Anal. Appl
, vol.30
, pp. 1084-1127
-
-
de Silva, V.1
Lim, L.-H.2
-
20
-
-
0003052447
-
How 3-MFA data can cause degenerate PARAFAC solutions, among other relationships
-
Coppi R, Bolasco S (eds), Elsevier: Amsterdam
-
Kruskal JB, Harshman RA, Lundy ME. How 3-MFA data can cause degenerate PARAFAC solutions, among other relationships. In Multiway Data Analysis, Coppi R, Bolasco S (eds). Elsevier: Amsterdam, 1989; 115-122.
-
(1989)
Multiway Data Analysis
, pp. 115-122
-
-
Kruskal, J.B.1
Harshman, R.A.2
Lundy, M.E.3
-
21
-
-
84984320741
-
Slowly converging Parafac sequences: Swamps and two-factor degeneracies
-
Mitchell BC, Burdick DS. Slowly converging Parafac sequences: swamps and two-factor degeneracies. J. Chemom. 1994; 8: 155-168.
-
(1994)
J. Chemom
, vol.8
, pp. 155-168
-
-
Mitchell, B.C.1
Burdick, D.S.2
-
22
-
-
0033653782
-
Construction and analysis of degenerate Parafac models
-
Paatero P. Construction and analysis of degenerate Parafac models. J. Chemom. 2000; 14: 285-299.
-
(2000)
J. Chemom
, vol.14
, pp. 285-299
-
-
Paatero, P.1
-
23
-
-
0030730107
-
Two-factor degeneracies and a stabilization of Parafac
-
Rayens WS, Mitchell BC. Two-factor degeneracies and a stabilization of Parafac. Chemom. Intell. Lab. Syst. 1997; 38: 173-181.
-
(1997)
Chemom. Intell. Lab. Syst
, vol.38
, pp. 173-181
-
-
Rayens, W.S.1
Mitchell, B.C.2
-
24
-
-
33751214191
-
Degeneracy in Candecomp/Parafac explained for p×p×2 arrays of rank p+1 or higher
-
Stegeman A. Degeneracy in Candecomp/Parafac explained for p×p×2 arrays of rank p+1 or higher. Psychometrika 2006; 71: 483-501.
-
(2006)
Psychometrika
, vol.71
, pp. 483-501
-
-
Stegeman, A.1
-
25
-
-
38949176012
-
Degeneracy in Candecomp/Parafac and Indscal explained for several three-sliced arrays with a two-valued typical rank
-
Stegeman A. Degeneracy in Candecomp/Parafac and Indscal explained for several three-sliced arrays with a two-valued typical rank. Psychometrika 2007; 72: 601-619.
-
(2007)
Psychometrika
, vol.72
, pp. 601-619
-
-
Stegeman, A.1
-
26
-
-
52949146687
-
Low-rank approximation of generic p q 2 arrays and diverging components in the Candecomp/Parafac model
-
Stegeman A. Low-rank approximation of generic p q 2 arrays and diverging components in the Candecomp/Parafac model. SIAM J. Matrix Anal. Appl. 2008; 30: 988-1007.
-
(2008)
Siam J. Matrix Anal. Appl
, vol.30
, pp. 988-1007
-
-
Stegeman, A.1
-
27
-
-
70349658465
-
Using the simultaneous generalized Schur decomposition as a Candecomp/Parafac algorithm for ill-conditioned data
-
Stegeman A. Using the simultaneous generalized Schur decomposition as a Candecomp/Parafac algorithm for ill-conditioned data. J. Chemom. 2009; 23: 385-392.
-
(2009)
J. Chemom
, vol.23
, pp. 385-392
-
-
Stegeman, A.1
-
28
-
-
68649114427
-
A method to avoid diverging components in the Candecomp/Parafac model for generic I×J×2 arrays
-
Stegeman A, De Lathauver L. A method to avoid diverging components in the Candecomp/Parafac model for generic I×J×2 arrays. SIAM J. Matrix Anal. Appl. 2009; 30: 1614-1638.
-
(2009)
Siam J. Matrix Anal. Appl
, vol.30
, pp. 1614-1638
-
-
Stegeman, A.1
de Lathauver, L.2
-
29
-
-
0001158675
-
Explicit Candecomp/Parafac solutions for a contrived 2×2×2 array of rank three
-
ten Berge JMF, Kiers HAL, De Leeuw J., Explicit Candecomp/Parafac solutions for a contrived 2×2×2 array of rank three. Psychometrika 1988; 53: 579-584.
-
(1988)
Psychometrika
, vol.53
, pp. 579-584
-
-
ten Berge, J.M.F.1
Kiers, H.A.L.2
de Leeuw, J.3
-
30
-
-
85013370154
-
Border rank of a p×q×2 tensor and the optimal approximation of a pair of bilinear forms
-
Lecture Notes in Computer Science, 85, de Bakker JW, van Leeuwen J (eds), Springer: New York
-
Bini D. Border rank of a p×q×2 tensor and the optimal approximation of a pair of bilinear forms, In Automata, Languages and Programming (Lecture Notes in Computer Science, 85), de Bakker JW, van Leeuwen J (eds). Springer: New York, 1980; 98-108.
-
(1980)
Automata, Languages and Programming
, pp. 98-108
-
-
Bini, D.1
-
32
-
-
0030775193
-
A weighted non-negative least squares algorithm for three-way'PARAFAC' factor analysis
-
Paatero P. A weighted non-negative least squares algorithm for three-way'PARAFAC' factor analysis. Chemom. Intell. Lab. Syst. 1997; 38: 223-242.
-
(1997)
Chemom. Intell. Lab. Syst
, vol.38
, pp. 223-242
-
-
Paatero, P.1
-
33
-
-
17444379662
-
Computation of the canonical decomposition by means of a simultaneous generalized schur decomposition
-
De Lathauwer L, De Moor B, Vandewalle J. Computation of the canonical decomposition by means of a simultaneous generalized schur decomposition. SIAM J. Matrix Anal. Appl. 2004; 26: 295-327.
-
(2004)
Siam J. Matrix Anal. Appl
, vol.26
, pp. 295-327
-
-
de Lathauwer, L.1
de Moor, B.2
Vandewalle, J.3
-
34
-
-
0002332422
-
Principal component analysis of three-mode data by means of alternating least squares algorithms
-
Kroonenberg PM, de Leeuw J. Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika 1980; 45: 69-97.
-
(1980)
Psychometrika
, vol.45
, pp. 69-97
-
-
Kroonenberg, P.M.1
de Leeuw, J.2
-
35
-
-
51249165392
-
Three-mode factor analysis with binary core and orthonormality constraints
-
Rocci R. Three-mode factor analysis with binary core and orthonormality constraints. J. Ital. Stat. Soc. 1992; 3: 413-422.
-
(1992)
J. Ital. Stat. Soc
, vol.3
, pp. 413-422
-
-
Rocci, R.1
-
36
-
-
0000020580
-
Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays
-
ten Berge JMF. Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays. Psychometrika, 1991;56: 631-636.
-
(1991)
Psychometrika
, vol.56
, pp. 631-636
-
-
ten Berge, J.M.F.1
-
37
-
-
0038954994
-
O(n2.7799) complexity for n×n approximate matrix multiplication
-
Bini D, Capovani M, Romani F, Lotti G. O(n2.7799) complexity for n×n approximate matrix multiplication. Inf. Process. Lett. 1979; 8: 234-235.
-
(1979)
Inf. Process. Lett
, vol.8
, pp. 234-235
-
-
Bini, D.1
Capovani, M.2
Romani, F.3
Lotti, G.4
-
38
-
-
33645813863
-
Approximate solutions for the bilinear form computational problem
-
Bini D, Lotti G, Romani F. Approximate solutions for the bilinear form computational problem. SIAM J. Comput. 1980; 9: 692-697.
-
(1980)
Siam J. Comput
, vol.9
, pp. 692-697
-
-
Bini, D.1
Lotti, G.2
Romani, F.3
-
39
-
-
51249182176
-
Relations between exact and approximate bilinear algorithms
-
Bini D. Relations between exact and approximate bilinear algorithms. Applications. Calcolo 1980; 17: 87-97.
-
(1980)
Applications. Calcolo
, vol.17
, pp. 87-97
-
-
Bini, D.1
-
40
-
-
0035117034
-
Modeling of spectroscopic batch process data using grey models to incorporate external information
-
Gurden SP, Westerhuis JA, Bijlsma S, Smilde A. Modeling of spectroscopic batch process data using grey models to incorporate external information. J. Chemom. 2001; 15: 101-121.
-
(2001)
J. Chemom
, vol.15
, pp. 101-121
-
-
Gurden, S.P.1
Westerhuis, J.A.2
Bijlsma, S.3
Smilde, A.4
-
41
-
-
0004050741
-
Multi-way analysis in the food industry
-
University of Amsterdam
-
Bro R. Multi-way analysis in the food industry. Models Algorithms and Applications, University of Amsterdam, 1998.
-
(1998)
Models Algorithms and Applications
-
-
Bro, R.1
-
42
-
-
0038685059
-
A new efficient method for determining the number of components in PARAFAC models
-
Bro R, Kiers HAL. A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 2003; 17: 274-286.
-
(2003)
J. Chemom
, vol.17
, pp. 274-286
-
-
Bro, R.1
Kiers, H.A.L.2
|