메뉴 건너뛰기




Volumn 6, Issue 1, 2013, Pages

LVQ-SMOTE - Learning Vector Quantization based Synthetic Minority Over-sampling Technique for biomedical data

Author keywords

Biomedical data; Learning Vector Quantization; Over sampling; Synthetic Minority Over sampling Technique

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BETA TURN; BIOINFORMATICS; BIOMEDICINE; CLASSIFICATION ALGORITHM; CLINICAL EFFECTIVENESS; CONTROLLED STUDY; HUMAN; LEARNING VECTOR QUANTIFICATION; MACHINE LEARNING; PERFORMANCE; PREDICTION; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; SAMPLING; SMOTE ALGORITHM; VISUAL CORTEX;

EID: 84884791050     PISSN: None     EISSN: 17560381     Source Type: Journal    
DOI: 10.1186/1756-0381-6-16     Document Type: Article
Times cited : (123)

References (26)
  • 1
    • 64549116289 scopus 로고    scopus 로고
    • MicroPred: Effective classification of pre-miRNAs for human miRNA gene prediction
    • 10.1093/bioinformatics/btp107 19233894
    • MicroPred: effective classification of pre-miRNAs for human miRNA gene prediction. Batuwita R, palade V, Bioinformatics 2009 25 8 989 995 10.1093/bioinformatics/btp107 19233894
    • (2009) Bioinformatics , vol.25 , Issue.8 , pp. 989-995
    • Batuwita, R.1    Palade, V.2
  • 2
    • 77950545785 scopus 로고    scopus 로고
    • Predicting protein-protein interactions in unbalanced data using the primary structure of proteins
    • 20043860
    • Predicting protein-protein interactions in unbalanced data using the primary structure of proteins. Yu C, Chou L, Chang D, BMC Bioinformatics 2010 11 167 1 10 20043860
    • (2010) BMC Bioinformatics , vol.11 , Issue.167 , pp. 1-10
    • Yu, C.1    Chou, L.2    Chang, D.3
  • 3
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • Learning from imbalanced data. Haibo H, IEEE Trans Knowledge Data Eng 2009 21 9 1263 1284
    • (2009) IEEE Trans Knowledge Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • Haibo, H.1
  • 4
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • 10.1006/inco.1995.1136
    • Boosting a weak learning algorithm by majority. Freund Y, Inform Comput 1995 121 2 256 285 10.1006/inco.1995.1136
    • (1995) Inform Comput , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Random forests. Breiman L, Mach Learn 2001 45 5 32 10.1023/A: 1010933404324 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 27144501672 scopus 로고    scopus 로고
    • Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
    • Advances in Intelligent Computing: International Conference on Intelligent Computing, ICIC 2005. Proceedings
    • Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. Han H, Wang WY, Mao BH, Proc of the 2005 International Conference on Advances in Intelligent Computing Hefei: Springer 2005 878 887 (Pubitemid 41491129)
    • (2005) Lecture Notes in Computer Science , vol.3644 , Issue.PART I , pp. 878-887
    • Han, H.1    Wang, W.-Y.2    Mao, B.-H.3
  • 9
    • 77957793322 scopus 로고    scopus 로고
    • RAMOBoost: Ranked minority oversampling in boosting
    • 20805051
    • RAMOBoost: ranked minority oversampling in boosting. Shen S, He H, Garcia E, IEEE Trans Neural Netw 2010 21 10 1624 1642 20805051
    • (2010) IEEE Trans Neural Netw , vol.21 , Issue.10 , pp. 1624-1642
    • Shen, S.1    He, H.2    Garcia, E.3
  • 10
    • 84891807032 scopus 로고    scopus 로고
    • MWMOTE - Majority weighted minority oversampling technique for imbalanced data set learning
    • doi:10.1109/TKDE.2012.232
    • MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning. Baura S, Islam M, Yao X, Murase K, IEEE Trans Knowledge Data Eng 2012 (PrePrint) doi:10.1109/TKDE.2012.232
    • (2012) IEEE Trans Knowledge Data Eng
    • Baura, S.1    Islam, M.2    Yao, X.3    Murase, K.4
  • 15
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • 10.1126/science.286.5439.531 10521349
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Golub T, Science 1999 286 5439 531 537 10.1126/science.286.5439.531 10521349
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.1
  • 16
    • 18844414326 scopus 로고    scopus 로고
    • High accuracy prediction of β-turns and their types using propensities and multiple alignments
    • DOI 10.1002/prot.20461
    • High accuracy prediction of beta-turns and their types using propensities and multiple alignments. Fuchs P, Alix A, Proteins 2005 59 4 828 839 10.1002/prot.20461 15822097 (Pubitemid 40695857)
    • (2005) Proteins: Structure, Function and Genetics , vol.59 , Issue.4 , pp. 828-839
    • Fuchs, P.F.J.1    Alix, A.J.P.2
  • 17
    • 0028566270 scopus 로고
    • A revised set of potentials for beta-turn formation in proteins
    • 10.1002/pro.5560031206 7756980
    • A revised set of potentials for beta-turn formation in proteins. Hutchinson E, Thornton J, Protein Sci 1994 3 12 2207 2216 10.1002/pro.5560031206 7756980
    • (1994) Protein Sci , vol.3 , Issue.12 , pp. 2207-2216
    • Hutchinson, E.1    Thornton, J.2
  • 18
    • 77955078003 scopus 로고    scopus 로고
    • Predicting β -turns and their types using predicted backbone dihedral angles and secondary structures
    • 20043860
    • Predicting β -turns and their types using predicted backbone dihedral angles and secondary structures. Kountouris P, Hirst J, BMC Bioinformatics 2010 11 407 1 11 20043860
    • (2010) BMC Bioinformatics , vol.11 , Issue.407 , pp. 1-11
    • Kountouris, P.1    Hirst, J.2
  • 19
    • 34249753618 scopus 로고
    • Support-vector networks
    • Support-vector networks. Cortes C, Vapnik V, Mach Learn 1995 20 3 273 297
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 23
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • LIBSVM: a library for support vector machines. Chang C, Lin J, ACM Trans Intell Syst Technol 2011 2 27 531 537
    • (2011) ACM Trans Intell Syst Technol , vol.2 , Issue.27 , pp. 531-537
    • Chang, C.1    Lin, J.2
  • 24
    • 84887845544 scopus 로고    scopus 로고
    • ACM SIGKDD Explorations Newsletter; 2009. Machine Learning Group at the University of waikato. http://www.cs.waikato.ac.nz/ml/weka/
    • Weka 3: data mining software in Java. Mark H, Eibe F, Geoffrey H, Bernhard P, Peter R, Ian H, ACM SIGKDD Explorations Newsletter; 2009. Machine Learning Group at the University of waikato. http://www.cs.waikato.ac.nz/ml/ weka/
    • Weka 3: Data Mining Software in Java
    • Mark, H.1    Eibe, F.2    Geoffrey, H.3    Bernhard, P.4    Peter, R.5    Ian, H.6
  • 25
    • 0031211090 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • A decision-theoretic generalization of on-line learning and an application to boosting. Yaov F, Robert E, J Comput Syst Sci 1995 55 119 139
    • (1995) J Comput Syst Sci , vol.55 , pp. 119-139
    • Yaov, F.1    Robert, E.2
  • 26
    • 79960881573 scopus 로고    scopus 로고
    • Prediction of β-turn types in protein by using composite vector
    • 21781975
    • Prediction of β-turn types in protein by using composite vector. Shi X, Hu X, Li S, Liu X, J Theor Biol 2011 286 1 24 30 21781975
    • (2011) J Theor Biol , vol.286 , Issue.1 , pp. 24-30
    • Shi, X.1    Hu, X.2    Li, S.3    Liu, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.