메뉴 건너뛰기




Volumn 227, Issue 6, 2013, Pages 640-653

Radial basis function neural network based comparison of dimensionality reduction techniques for effective bearing diagnostics

Author keywords

Fisher's criterion; Fuzzy C means; Principal component analysis; Radial basis function; Rolling element bearing; Vibration signal analysis; Wavelet denoising

Indexed keywords

FISHER'S CRITERION; FUZZY C MEAN; RADIAL BASIS FUNCTIONS; ROLLING ELEMENT BEARING; VIBRATION SIGNAL ANALYSIS; WAVELET DENOISING;

EID: 84884546310     PISSN: 13506501     EISSN: 2041305X     Source Type: Journal    
DOI: 10.1177/1350650112464927     Document Type: Article
Times cited : (26)

References (50)
  • 1
    • 0033336360 scopus 로고    scopus 로고
    • A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings
    • Tandon N and Choudhury A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol Int 1999; 32: 469-480.
    • (1999) Tribol Int , vol.32 , pp. 469-480
    • Tandon, N.1    Choudhury, A.2
  • 2
    • 42149097121 scopus 로고    scopus 로고
    • Bearing signature analysis as a medium for fault detection: A review
    • Patil MS, Mathew J and Rajendrakumar PK. Bearing signature analysis as a medium for fault detection: a review. J Tribol 2008; 130: 014001-1-014001-7.
    • (2008) J Tribol , vol.130 , pp. 0140011-0140017
    • Patil, M.S.1    Mathew, J.2    Rajendrakumar, P.K.3
  • 4
    • 77956618931 scopus 로고    scopus 로고
    • Wavelet denoising using principal component analysis
    • Yang R and Ren M. Wavelet denoising using principal component analysis. Expert Syst Appl 2011; 38: 1073-1076.
    • (2011) Expert Syst Appl , vol.38 , pp. 1073-1076
    • Yang, R.1    Ren, M.2
  • 5
    • 34548035641 scopus 로고    scopus 로고
    • Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine
    • Abbasion S, Rafsanjani A, Farshidianfar A, et al. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mech Syst Sig Process 2007; 21: 2933-2945.
    • (2007) Mech Syst Sig Process , vol.21 , pp. 2933-2945
    • Abbasion, S.1    Rafsanjani, A.2    Farshidianfar, A.3
  • 6
    • 40949137860 scopus 로고    scopus 로고
    • Customized wavelet denoising using intra- and inter-scale dependency for bearing fault detection
    • Li Z, He Z, Zi Y, et al. Customized wavelet denoising using intra- and inter-scale dependency for bearing fault detection. J Sound Vib 2008; 313: 342-359.
    • (2008) J Sound Vib , vol.313 , pp. 342-359
    • Li, Z.1    He, Z.2    Zi, Y.3
  • 7
    • 70349272168 scopus 로고    scopus 로고
    • Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform
    • Wang Y, He Z and Zi Y. Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform. Mech Syst Sig Process 2010; 24: 119-137.
    • (2010) Mech Syst Sig Process , vol.24 , pp. 119-137
    • Wang, Y.1    He, Z.2    Zi, Y.3
  • 8
    • 78349308990 scopus 로고    scopus 로고
    • Multiwavelet denoising with improved neighbouring coefficients for application on rolling bearing fault diagnosis
    • Wang X, Zi Y and He Z. Multiwavelet denoising with improved neighbouring coefficients for application on rolling bearing fault diagnosis. Mech Syst Sig Process 2011; 25: 285-304.
    • (2011) Mech Syst Sig Process , vol.25 , pp. 285-304
    • Wang, X.1    Zi, Y.2    He, Z.3
  • 9
    • 80052273989 scopus 로고    scopus 로고
    • Rolling element bearing fault detection based on optimal antisymmetric real Laplace wavelet
    • Feng K, Jiang Z, He W, et al. Rolling element bearing fault detection based on optimal antisymmetric real Laplace wavelet. Measurement 2011; 44: 1582-1591.
    • (2011) Measurement , vol.44 , pp. 1582-1591
    • Feng, K.1    Jiang, Z.2    He, W.3
  • 10
    • 79952455704 scopus 로고    scopus 로고
    • Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD
    • Jiang Y, Tang B, Qin Y, et al. Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD. Renewable Energy 2011; 36: 2146-2153.
    • (2011) Renewable Energy , vol.36 , pp. 2146-2153
    • Jiang, Y.1    Tang, B.2    Qin, Y.3
  • 11
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • Donoho DL. De-noising by soft-thresholding. IEEE Trans Inf Theory 1995; 41(3): 613-627.
    • (1995) IEEE Trans Inf Theory , vol.41 , Issue.3 , pp. 613-627
    • Donoho, D.L.1
  • 13
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • Donoho DL and Johnstone IM. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994; 81(3): 425-455.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 17
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
    • Jack LB and Nandi AK. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mech Syst Sig Process 2002; 16(2-3): 373-390.
    • (2002) Mech Syst Sig Process , vol.16 , Issue.2-3 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 18
    • 0346306460 scopus 로고    scopus 로고
    • Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography
    • Peng ZK and Chu FL. Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mech Syst Sig Process 2004; 18: 199-221.
    • (2004) Mech Syst Sig Process , vol.18 , pp. 199-221
    • Peng, Z.K.1    Chu, F.L.2
  • 19
    • 78649600770 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics - A tutorial
    • Randall RB and Antoni J. Rolling element bearing diagnostics - a tutorial. Mech Syst Sig Process 2011; 25: 485-520.
    • (2011) Mech Syst Sig Process , vol.25 , pp. 485-520
    • Randall, R.B.1    Antoni, J.2
  • 20
    • 2142733621 scopus 로고    scopus 로고
    • Bearing fault detection using artificial neural networks and genetic algorithm
    • Samanta B, Al-Balushi KR and Al-Araimi SA. Bearing fault detection using artificial neural networks and genetic algorithm. EURASIP J Appl Sig Process 2004; 3: 366-377.
    • (2004) EURASIP J Appl Sig Process , vol.3 , pp. 366-377
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 21
    • 29444460051 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithm for bearing fault detection
    • Samanta B, Al-Balushi KR and Al-Araimi SA. Artificial neural networks and genetic algorithm for bearing fault detection. Soft Comput 2006; 10: 264-271.
    • (2006) Soft Comput , vol.10 , pp. 264-271
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 22
    • 0027585736 scopus 로고
    • Monitoring and diagnosis of rolling element bearings using artificial neural networks
    • Alguindigue IE, Loskiewicz-Buczak A and Uhrig RE. Monitoring and diagnosis of rolling element bearings using artificial neural networks. IEEE Trans Ind Electron 1993; 40(2): 209-217.
    • (1993) IEEE Trans Ind Electron , vol.40 , Issue.2 , pp. 209-217
    • Alguindigue, I.E.1    Loskiewicz-Buczak, A.2    Uhrig, R.E.3
  • 23
    • 0034297837 scopus 로고    scopus 로고
    • Neural-networkbased motor rolling bearing fault diagnosis
    • Li B, Chow MY, Tipsuwan Y, et al. Neural-networkbased motor rolling bearing fault diagnosis. IEEE Trans Ind Electron 2000; 47(5): 1060-1069.
    • (2000) IEEE Trans Ind Electron , vol.47 , Issue.5 , pp. 1060-1069
    • Li, B.1    Chow, M.Y.2    Tipsuwan, Y.3
  • 24
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
    • Samanta B and Al-Balushi KR. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mech Syst Sig Process 2003; 17(2): 317-328.
    • (2003) Mech Syst Sig Process , vol.17 , Issue.2 , pp. 317-328
    • Samanta, B.1    Al-Balushi, K.R.2
  • 25
    • 54049122294 scopus 로고    scopus 로고
    • Application of the Laplace-wavelet combined with ANN for rolling bearing fault diagnosis
    • Al-Raheem KF, Roy A, Ramachandran KP, et al. Application of the Laplace-wavelet combined with ANN for rolling bearing fault diagnosis. J Vib Acoust 2008; 130(5): 051007-1-051007-9.
    • (2008) J Vib Acoust , vol.130 , Issue.5 , pp. 0510071-0510079
    • Al-Raheem, K.F.1    Roy, A.2    Ramachandran, K.P.3
  • 26
    • 70349285991 scopus 로고    scopus 로고
    • Automated diagnosis of rolling bearings using MRA and neural networks
    • Castejon C, Lara O and Garcia-Prada JC. Automated diagnosis of rolling bearings using MRA and neural networks. Mech Syst Sig Process 2010; 24: 289-299.
    • (2010) Mech Syst Sig Process , vol.24 , pp. 289-299
    • Castejon, C.1    Lara, O.2    Garcia-Prada, J.C.3
  • 27
    • 71749111101 scopus 로고    scopus 로고
    • Applications of fault diagnosis in rotating machinery by using time series analysis with neural network
    • Wang CC, Kang Y, Shen PC, et al. Applications of fault diagnosis in rotating machinery by using time series analysis with neural network. Expert Syst Appl 2010; 37: 1696-1702.
    • (2010) Expert Syst Appl , vol.37 , pp. 1696-1702
    • Wang, C.C.1    Kang, Y.2    Shen, P.C.3
  • 28
    • 78049528234 scopus 로고    scopus 로고
    • Fault diagnosis of ball bearings using machine learning methods
    • Kankar PK, Satish Sharma C and Harsha SP. Fault diagnosis of ball bearings using machine learning methods. Expert Syst Appl 2011; 38: 1876-1886.
    • (2011) Expert Syst Appl , vol.38 , pp. 1876-1886
    • Kankar, P.K.1    Satish Sharma, C.2    Harsha, S.P.3
  • 29
    • 81855170055 scopus 로고    scopus 로고
    • Induction motors bearing fault detection using pattern recognition techniques
    • Zarei J. Induction motors bearing fault detection using pattern recognition techniques. Expert Syst Appl 2012; 39: 68-73.
    • (2012) Expert Syst Appl , vol.39 , pp. 68-73
    • Zarei, J.1
  • 30
    • 33746377295 scopus 로고    scopus 로고
    • Detection of bearing defects in three-phase induction motors using Park's transform and radial basis function neural networks
    • Izzet YO, Dalci KB and Senol I. Detection of bearing defects in three-phase induction motors using Park's transform and radial basis function neural networks. Sadhana 2006; 31(3): 235-244.
    • (2006) Sadhana , vol.31 , Issue.3 , pp. 235-244
    • Izzet, Y.O.1    Dalci, K.B.2    Senol, I.3
  • 31
    • 64049098473 scopus 로고    scopus 로고
    • Application of an intelligent classification method to mechanical fault diagnosis
    • Lei Y, Zhengji H and Yanyang Z. Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst Appl 2009; 36: 9941-9948.
    • (2009) Expert Syst Appl , vol.36 , pp. 9941-9948
    • Lei, Y.1    Zhengji, H.2    Yanyang, Z.3
  • 34
    • 4544257914 scopus 로고    scopus 로고
    • Radial basis function neural networks for tool wear monitoring: A critical evaluation
    • Srinivasa Pai P, Nagabhushana TN, Ramakrishna Rao PK, et al. Radial basis function neural networks for tool wear monitoring: a critical evaluation. Int J COMADEM 2002; 5(3): 21-30.
    • (2002) Int J COMADEM , vol.5 , Issue.3 , pp. 21-30
    • Srinivasa Pai, P.1    Nagabhushana, T.N.2    Ramakrishna Rao, P.K.3
  • 35
    • 4544300872 scopus 로고    scopus 로고
    • Neural network based tool wear monitoring techniques: A critical performance evaluation
    • Nagabhushana TN, Srinivasa Pai P and Rao Raj BKN. Neural network based tool wear monitoring techniques: a critical performance evaluation. Int J COMADEM 2004; 7(1): 29-38.
    • (2004) Int J COMADEM , vol.7 , Issue.1 , pp. 29-38
    • Nagabhushana, T.N.1    Srinivasa Pai, P.2    Rao Raj, B.K.N.3
  • 36
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • Samanta B, Al-Balushi KR and Al-Araimi SA. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Eng Appl Artif Intell 2003; 16: 657-665.
    • (2003) Eng Appl Artif Intell , vol.16 , pp. 657-665
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 37
    • 33750962698 scopus 로고    scopus 로고
    • Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems
    • Saxena A and Saad A. Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems. Appl Soft Comput 2007; 7: 441-454.
    • (2007) Appl Soft Comput , vol.7 , pp. 441-454
    • Saxena, A.1    Saad, A.2
  • 38
    • 64949087144 scopus 로고    scopus 로고
    • Fault diagnosis of rolling element bearing using time-domain features and neural networks
    • Kharagpur, India, 8-10 December. Piscataway, NJ: IEEE
    • Sreejith B, Vermaand AK and Srividya A. Fault diagnosis of rolling element bearing using time-domain features and neural networks. In: Proceedings of the IEEE region 10 colloquium and the third ICIIS, Kharagpur, India, 8-10 December 2008, vol. 409, pp.1-6. Piscataway, NJ: IEEE.
    • (2008) Proceedings of the IEEE Region 10 Colloquium and the Third ICIIS , vol.409 , pp. 1-6
    • Sreejith, B.1    Vermaand, A.K.2    Srividya, A.3
  • 39
    • 0038171506 scopus 로고    scopus 로고
    • Technical Report, University of Otago, (2002, accessed 20 May 2012)
    • Smith LI. A tutorial on principal components analysis. Technical Report, University of Otago, 2002, http://www.sccg.sk/-haladova/principal-components.pdf (2002, accessed 20 May 2012).
    • (2002) A Tutorial on Principal Components Analysis
    • Smith, L.I.1
  • 43
    • 0033684356 scopus 로고    scopus 로고
    • Wavelet packet feature extraction for vibration monitoring
    • Yen GG and Lin K-C. Wavelet packet feature extraction for vibration monitoring. IEEE Trans Ind Electron 2000; 47(3): 650-667.
    • (2000) IEEE Trans Ind Electron , vol.47 , Issue.3 , pp. 650-667
    • Yen, G.G.1    Lin, K.-C.2
  • 46
    • 84886731825 scopus 로고    scopus 로고
    • Experimental study on condition monitoring of low speed bearings in time domain
    • F Albermani (ed.), Brisbane, Australia, 10-12 December. Brisbane, Australia: Queensland University of Technology
    • Kim EY, Andy Tan CC, Yang B-S, et al. Experimental study on condition monitoring of low speed bearings in time domain. In: F Albermani (ed.) Proceedings of the 5th Australian congress on applied mechanics, Brisbane, Australia, 10-12 December 2007. Brisbane, Australia: Queensland University of Technology.
    • (2007) Proceedings of the 5th Australian Congress on Applied Mechanics
    • Kim, E.Y.1    Andy Tan, C.C.2    Yang, B.-S.3
  • 47
    • 48749115318 scopus 로고    scopus 로고
    • A new approach to intelligent fault diagnosis of rotating machinery
    • Lei Y, Zhengji H and Yanyang Z. A new approach to intelligent fault diagnosis of rotating machinery. Expert Syst Appl 2008; 35: 1593-1600.
    • (2008) Expert Syst Appl , vol.35 , pp. 1593-1600
    • Lei, Y.1    Zhengji, H.2    Yanyang, Z.3
  • 48
    • 77956621055 scopus 로고    scopus 로고
    • A new MLP approach for the detection of the incipient bearing damage
    • Senguler T, Karatoprak E and Serker S. A new MLP approach for the detection of the incipient bearing damage. Adv Electr Comput Eng 2010; 10(3): 34-39.
    • (2010) Adv Electr Comput Eng , vol.10 , Issue.3 , pp. 34-39
    • Senguler, T.1    Karatoprak, E.2    Serker, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.