메뉴 건너뛰기




Volumn 7, Issue 1, 2004, Pages 29-38

Neural network based tool wear monitoring techniques : A critical performance evaluation

Author keywords

AI Techniques; ANNs; Face Milling; MLPs, RBFs, Resource Allocation Network (RAN), Growing Cell Structures Network (GCSN), Acoustic Emission (AE); Surface Roughness; Tool Wear

Indexed keywords

ACOUSTIC EMISSIONS; AUTOMATION; DRILLING; INTELLIGENT CONTROL; MATHEMATICAL MODELS; MONITORING; OPTIMIZATION; PLASTIC DEFORMATION; RESOURCE ALLOCATION; SURFACE ROUGHNESS; SURFACE WAVES; WEAR OF MATERIALS;

EID: 4544300872     PISSN: 13637681     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (2)

References (40)
  • 5
    • 0011322267 scopus 로고
    • An experimental study of strategies for integrating sensor information in machining
    • G. Chryssolouris & M. Domroesse (1989). An Experimental Study of Strategies for Integrating Sensor Information in Machining. Annals of the CIRP, 38 (1), 425-428.
    • (1989) Annals of the CIRP , vol.38 , Issue.1 , pp. 425-428
    • Chryssolouris, G.1    Domroesse, M.2
  • 6
    • 0033909199 scopus 로고    scopus 로고
    • Data fusion neural network for tool condition monitoring in CNC milling machining
    • S. -L. Chen & Y. W. Jen (2000). Data Fusion Neural Network for Tool Condition Monitoring in CNC Milling Machining.Intel. Jnl. Of Machine Tools & Manufact. 40. 381-400.
    • (2000) Intel. Jnl. of Machine Tools & Manufact. , vol.40 , pp. 381-400
    • Chen, S.L.1    Jen, Y.W.2
  • 7
    • 0030308734 scopus 로고    scopus 로고
    • An investigation of the sensitivity of a single layer perceptron neural network to tool wear inception during turning process
    • C. H. Dagli, M. Akay, C. L. P. Chen, B. R. Fernandez & J. Ghosh (Eds.). . ASME Press. (ANNIE '96)
    • D. E. Dimla, P. M. Lister & N. J. Leighton (1996).An Investigation of the Sensitivity of a Single Layer Perceptron Neural Network to Tool Wear Inception during Turning Process.In: C. H. Dagli, M. Akay, C. L. P. Chen, B. R. Fernandez & J. Ghosh (Eds.). Intelligent Engng. Systems through Artificial Neural Networks. Vol. 6. ASME Press. 867-873 (ANNIE '96).
    • (1996) Intelligent Engng. Systems Through Artificial Neural Networks. , vol.6 , pp. 867-873
    • Dimla, D.E.1    Lister, P.M.2    Leighton, N.J.3
  • 8
    • 0030650274 scopus 로고    scopus 로고
    • A multi-sensor integration method of signals in a metal cutting operation via application of multilayer perceptron neural networks
    • Cambridge, 7 - 9th July
    • D. E. Dimla, P. M. Lister & N. J. Leighton (1997a). A Multi-sensor Integration Method of Signals in a Metal Cutting Operation via Application of Multilayer Perceptron Neural Networks. In: Proc. of the 5th IEE International Conference on Artificial Neural Networks, Cambridge, 7 - 9th July. 306-311.
    • (1997) Proc. of the 5th IEE International Conference on Artificial Neural Networks , pp. 306-311
    • Dimla, D.E.1    Lister, P.M.2    Leighton, N.J.3
  • 9
    • 0031235710 scopus 로고    scopus 로고
    • Neural network solutions to the tool condition monitoring problems in metal cutting - A critical review
    • D. E. Dimla, P. M. Lister & N. J. Leighton (1997b). Neural Network Solutions to the Tool Condition Monitoring Problems in Metal Cutting - A Critical Review. Intl. Jnl. of Mech. Tool. Manufact. 37 (9), 1219-1241.
    • (1997) Intl. Jnl. of Mech. Tool. Manufact. , vol.37 , Issue.9 , pp. 1219-1241
    • Dimla, D.E.1    Lister, P.M.2    Leighton, N.J.3
  • 10
    • 0342356521 scopus 로고    scopus 로고
    • Application of perceptron neural networks to tool-state classification in a metal-turning operation
    • D. E. Dimla, Snr (1999). Application of Perceptron Neural Networks to Tool-State Classification in a Metal-Turning Operation. Jnl. of Eng. App. of Artificial Intelligence. 12.471-477.
    • (1999) Jnl. of Eng. App. of Artificial Intelligence , vol.12 , pp. 471-477
    • Dimla Sr., D.E.1
  • 11
    • 0033728441 scopus 로고    scopus 로고
    • Sensor signals for tool-wear monitoring in metal cutting operations - A review of methods
    • D.E. Dimla, Snr (2000). Sensor Signals for Tool-Wear Monitoring in Metal Cutting Operations - A Review of Methods. Int. J. of Machine Tools & Manufacture. 40.1073-1098.
    • (2000) Int. J. of Machine Tools & Manufacture. , vol.40 , pp. 1073-1098
    • Dimla Sr., D.E.1
  • 12
    • 0033204514 scopus 로고    scopus 로고
    • Signal understanding and tool condition monitoring
    • R. Du (1999). Signal Understanding and Tool Condition Monitoring. Jnl. of Eng. App. of Artificial Intelligence. 12. 585-597.
    • (1999) Jnl. of Eng. App. of Artificial Intelligence , vol.12 , pp. 585-597
    • Du, R.1
  • 13
    • 1842693643 scopus 로고    scopus 로고
    • Knowledge based failure diagnostics for machine tool systems
    • A. Davies (1998). Knowledge Based Failure Diagnostics for Machine Tool Systems. Int. Jnl. of COMADEM. Vol. 1(1). 5-11.
    • (1998) Int. Jnl. of COMADEM. , vol.1 , Issue.1 , pp. 5-11
    • Davies, A.1
  • 14
    • 15844405414 scopus 로고
    • Neural network sensor fusion for tool condition monitoring
    • D. A. Dornfeld (1990).Neural Network Sensor Fusion for Tool Condition Monitoring.Annals of CIRP, 39, 101-105.
    • (1990) Annals of CIRP , vol.39 , pp. 101-105
    • Dornfeld, D.A.1
  • 16
    • 4544339461 scopus 로고    scopus 로고
    • On - Line monitoring of tool wear in turning operations
    • A. Ghasempoor, T. N. Moore & J. Jeswiet (1998).On - Line Monitoring of Tool Wear in Turning Operations.Int. Jnl. of COMADEM. Vol. 1(4). 17-24.
    • (1998) Int. Jnl. of COMADEM. , vol.1 , Issue.4 , pp. 17-24
    • Ghasempoor, A.1    Moore, T.N.2    Jeswiet, J.3
  • 17
    • 0027540156 scopus 로고
    • Monitoring of milling process with an acoustic emission sensor
    • H. Hirotoshi, et al (1993). Monitoring of Milling Process with an Acoustic Emission Sensor.Jnl. of Jap. Soc of Precis. Engrs. 59(2). 269-274.
    • (1993) Jnl. of Jap. Soc of Precis. Engrs. , vol.59 , Issue.2 , pp. 269-274
    • Hirotoshi, H.1
  • 18
    • 0030150226 scopus 로고    scopus 로고
    • Using neural networks for tool condition monitoring based on wavelet decomposition
    • G. S. Hong, M. Rahman & Q. Zhou (1996).Using Neural Networks for Tool Condition Monitoring based on Wavelet Decomposition.Intl. Jnl. of Mach. Tool Manufact. 36(5). 551-556.
    • (1996) Intl. Jnl. of Mach. Tool Manufact. , vol.36 , Issue.5 , pp. 551-556
    • Hong, G.S.1    Rahman, M.2    Zhou, Q.3
  • 20
    • 0027884543 scopus 로고
    • Recent developments in chip control research & applications
    • I. S. Jawahir & C. A. van Luttervelt (1993).Recent Developments in Chip Control Research & Applications.Annals of CIRP. 42(2). 659-685.
    • (1993) Annals of CIRP. , vol.42 , Issue.2 , pp. 659-685
    • Jawahir, I.S.1    Van Luttervelt, C.A.2
  • 21
    • 0019910935 scopus 로고
    • The production of cutting force in end milling with application to concerning cuts
    • W. Klein, R. DeVor & J. Lindberg (1982).The Production of Cutting Force in End Milling with Application to concerning Cuts. Int. Jnl. of Mach. Tools Design & Research. 22. 7-22.
    • (1982) Int. Jnl. of Mach. Tools Design & Research , vol.22 , pp. 7-22
    • Klein, W.1    Devor, R.2    Lindberg, J.3
  • 22
    • 0031274467 scopus 로고    scopus 로고
    • An integrated approach to fuzzy learning vector quantization and fuzzy c-means clustering
    • N. B. Karayiannis & J. C. Bezdek (1997). An Integrated approach to Fuzzy Learning Vector Quantization and Fuzzy c-means Clustering.IEEE Trans. on Fuzzy Systems. 5(4). 622-628.
    • (1997) IEEE Trans. on Fuzzy Systems. , vol.5 , Issue.4 , pp. 622-628
    • Karayiannis, N.B.1    Bezdek, J.C.2
  • 23
    • 0029305549 scopus 로고
    • A customized neural network for sensor fusion in on-line monitoring of cutting tool wear
    • C. S. Leen, D. A. Dornfeld & S. E. Dreyfus (1995). A Customized Neural Network for Sensor Fusion in On-Line Monitoring of Cutting Tool Wear. ASME J. of Engg. for Industry. 117. 152-159.
    • (1995) ASME J. of Engg. for Industry. , vol.117 , pp. 152-159
    • Leen, C.S.1    Dornfeld, D.A.2    Dreyfus, S.E.3
  • 24
    • 0030195892 scopus 로고    scopus 로고
    • Design and implementation of sensor based tool wear monitoring systems
    • C. S. Leen & D. A. Dornfeld (1996).Design and Implementation of Sensor Based Tool Wear Monitoring Systems. Jnl. of Mechanical Systems & Signal Processing. 10(4). 439-458.
    • (1996) Jnl. of Mechanical Systems & Signal Processing , vol.10 , Issue.4 , pp. 439-458
    • Leen, C.S.1    Dornfeld, D.A.2
  • 25
    • 0030234975 scopus 로고    scopus 로고
    • Fuzzy clustering for automated tool condition monitoring in machining
    • S. Li & M. A. Elbestawi (1996).Fuzzy Clustering for Automated Tool Condition Monitoring in Machining. Jnl. of Mech. Syst. & Sig. Proces. 10(5). 533-550.
    • (1996) Jnl. of Mech. Syst. & Sig. Proces. , vol.10 , Issue.5 , pp. 533-550
    • Li, S.1    Elbestawi, M.A.2
  • 26
    • 0028753711 scopus 로고
    • Intelligent machine tool: Perspectives & themes for future development
    • T. Moriwaki (1994).Intelligent Machine Tool: Perspectives & Themes for Future Development.ASME J. of Manufact. Sc. Eng. PED 68 - 2. 841-849.
    • (1994) ASME J. of Manufact. Sc. Eng. , vol.PED 68 - 2 , pp. 841-849
    • Moriwaki, T.1
  • 28
    • 0001071040 scopus 로고
    • A resource allocating network for function interpolation
    • J. Platt (1991).A Resource Allocating Network for Function Interpolation.Neural Computation. 3. 213-225.
    • (1991) Neural Computation , vol.3 , pp. 213-225
    • Platt, J.1
  • 29
    • 0031696430 scopus 로고    scopus 로고
    • Artificial intelligence approach to determination of cnc machining parameters in manufacturing: A review
    • K. S. Park & S. H. Kim (1998).Artificial Intelligence approach to Determination of CNC Machining Parameters in Manufacturing: A Review. Jnl. of Artificial Intelligence in Engineering. 12.127-134.
    • (1998) Jnl. of Artificial Intelligence in Engineering. , vol.12 , pp. 127-134
    • Park, K.S.1    Kim, S.H.2
  • 30
    • 0030149769 scopus 로고    scopus 로고
    • On-line tool condition monitoring using artificial neural networks
    • B. K. N. Rao, M. A. Javed, A. D. Hope & G. T. Smith (1996a).On-Line Tool Condition Monitoring using Artificial Neural Networks.Jnl.of Insight. Vol. 38(5). 351-354.
    • (1996) Jnl.of Insight. , vol.38 , Issue.5 , pp. 351-354
    • Rao, B.K.N.1    Javed, M.A.2    Hope, A.D.3    Smith, G.T.4
  • 33
    • 4544282376 scopus 로고    scopus 로고
    • Advances in acoustic emission technology (AET) in COMADEM: A state-of-the-art review
    • Sweden in August 2003
    • B. K. N. Rao (2003).Advances in Acoustic Emission technology (AET) in COMADEM: A State-of-the-Art Review.Proc. of the 16th Int. Congress on COMADEM held at the Vaxjo University, Sweden in August 2003. 1-18.
    • (2003) Proc. of the 16th Int. Congress on COMADEM Held at the Vaxjo University , pp. 1-18
    • Rao, B.K.N.1
  • 34
    • 4544377405 scopus 로고    scopus 로고
    • The role of acoustic emission in industrial condition monitoring
    • R. L. Reuben (1998).The Role of Acoustic Emission in Industrial Condition Monitoring. Jnl.of COMADEM. Vol. 1(4). 35-46.
    • (1998) Jnl.of COMADEM , vol.1 , Issue.4 , pp. 35-46
    • Reuben, R.L.1
  • 35
    • 0023349825 scopus 로고
    • Tool health monitoring using acoustic emission
    • A. Sampath & S. Vajpayee (1987).Tool Health Monitoring using Acoustic Emission.Int. Jnl. Prod. Res. 25(5). 703-719.
    • (1987) Int. Jnl. Prod. Res. , vol.25 , Issue.5 , pp. 703-719
    • Sampath, A.1    Vajpayee, S.2
  • 37
    • 0037139687 scopus 로고    scopus 로고
    • Acoustic emission analysis for tool wear monitoring in face milling
    • P. Srinivasa Pai & P. K. Ramakrishna Rao (2002a).Acoustic Emission Analysis for Tool Wear Monitoring in Face Milling.Int. Jnl. of Production Research. 40(5). 1081-1093.
    • (2002) Int. Jnl. of Production Research. , vol.40 , Issue.5 , pp. 1081-1093
    • Pai, P.S.1    Rao, P.K.R.2
  • 38
    • 4544257914 scopus 로고    scopus 로고
    • Radian basis function neural networks for tool wear condition monitoring
    • P. Srinivasa Pai, T. N. Nagabhushana, P. K. Ramakrishna Rao & B. K. N. Rao (2002b).Radian Basis Function Neural Networks for Tool Wear Condition Monitoring.Int. Jnl. of COMADEM. Vol.5(3). 21-30.
    • (2002) Int. Jnl. of COMADEM , vol.5 , Issue.3 , pp. 21-30
    • Srinivasa Pai, P.1    Nagabhushana, T.N.2    Rao, P.K.R.3    Rao, B.K.N.4
  • 39
    • 1842794466 scopus 로고    scopus 로고
    • Application of artificial intelligence to condition monitoring & maintenance management
    • S. J. Wilcox(1998).Application of Artificial Intelligence to Condition Monitoring & Maintenance Management Int. Jnl. of COMADEM. Vol. 1(2). 20-24.
    • (1998) Int. Jnl. of COMADEM , vol.1 , Issue.2 , pp. 20-24
    • Wilcox, S.J.1
  • 40
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal RBF neural network learning algorithm
    • L. Yingwei, N. Sundararajan & P. Saratchandran (1998).Performance Evaluation of a Sequential Minimal RBF Neural Network Learning Algorithm.IEEE Trans, on Neural Networks. 9(2). 308-318.
    • (1998) IEEE Trans, on Neural Networks , vol.9 , Issue.2 , pp. 308-318
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.