메뉴 건너뛰기




Volumn 14, Issue 3, 2013, Pages 1140-1150

Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (marlin-atsc): Methodology and large-scale application on downtown toronto

Author keywords

Adaptive traffic signal control; game theory; microsimulation modeling; multi agent reinforcement learning; multi agent system; reinforcement learning

Indexed keywords

ADAPTIVE TRAFFIC SIGNAL CONTROL; LARGE-SCALE APPLICATIONS; MICROSIMULATION MODELING; MULTI-AGENT REINFORCEMENT LEARNING; TRAFFIC FLUCTUATIONS; TRAFFIC SIGNAL CONTROLLERS; TRAVEL TIME SAVINGS; URBAN TRAFFIC CONGESTION;

EID: 84883772487     PISSN: 15249050     EISSN: None     Source Type: Journal    
DOI: 10.1109/TITS.2013.2255286     Document Type: Article
Times cited : (471)

References (35)
  • 3
    • 0036470455 scopus 로고    scopus 로고
    • A multivariable regulator approach to trafficresponsive network-Wide signal control
    • Feb. 2002
    • C. Diakaki, M. Papageorgiou, and K. Aboudolas, A multivariable regulator approach to trafficresponsive network-Wide signal control, Control Eng. Pract., vol. 10, no. 2, pp. 183-195, Feb. 2002.
    • Control Eng. Pract. , vol.10 , Issue.2 , pp. 183-195
    • Diakaki, C.1    Papageorgiou, M.2    Aboudolas, K.3
  • 4
    • 5344268314 scopus 로고
    • SCAT-The Sydney co-ordinated adaptive traffic system: Philosophy and benefits
    • Berkeley, CA, USA
    • A. G. Sims and K. W. Dobinson, SCAT-The Sydney co-ordinated adaptive traffic system: Philosophy and benefits, presented at the Int. Symp. Traffic Control Systems, Berkeley, CA, USA, 1979.
    • (1979) Int. Symp Traffic Control Systems
    • Sims, A.G.1    Dobinson, K.W.2
  • 6
    • 84996602328 scopus 로고
    • OPAC: A demand-responsive strategy for traffic signal control
    • N. H. Gartner, OPAC: A demand-responsive strategy for traffic signal control, Transp. Res. Rec., J. Transp. Res. Board, vol. 906, pp. 75-81, 1983.
    • (1983) Transp. Res. Rec., J. Transp. Res. Board , vol.906 , pp. 75-81
    • Gartner, N.H.1
  • 7
    • 0002524006 scopus 로고
    • Hierarchical framework for real-Time traffic control
    • K. L. Head, P. B.Mirchandani, and D. Sheppard, Hierarchical framework for real-Time traffic control, Transp. Res. Rec., vol. 1360, pp. 82-88, 1992.
    • (1992) Transp. Res. Rec. , vol.1360 , pp. 82-88
    • Head, K.L.1    Mirchandani, P.B.2    Sheppard, D.3
  • 8
    • 59849097978 scopus 로고    scopus 로고
    • Opportunities for multiagent systems and multiagent reinforcement learning in traffic control
    • Jun. 2009
    • A. L. C. Bazzan, Opportunities for multiagent systems and multiagent reinforcement learning in traffic control, Autonomous Agents Multi-Agent Syst., vol. 18, no. 3, pp. 342-375, Jun. 2009.
    • Autonomous Agents Multi-Agent Syst. , vol.18 , Issue.3 , pp. 342-375
    • Bazzan, A.L.C.1
  • 9
    • 1842427901 scopus 로고    scopus 로고
    • Reinforcement learning: Introduction to theory and potential for transport applications
    • Dec. 2003
    • B. Abdulhai and L. Kattan, Reinforcement learning: Introduction to theory and potential for transport applications, Can. J. Civil Eng., vol. 30, no. 6, pp. 981-991, Dec. 2003.
    • Can. J. Civil Eng. , vol.30 , Issue.6 , pp. 981-991
    • Abdulhai, B.1    Kattan, L.2
  • 10
    • 78650477219 scopus 로고    scopus 로고
    • An agent-Based learning towards decentralized and coordinated traffic signal control
    • S. El-Tantawy and B. Abdulhai, An agent-Based learning towards decentralized and coordinated traffic signal control, in Proc. 13th IEEE ITSC, 2010, pp. 665-670.
    • (2010) Proc. 13th IEEE ITSC , pp. 665-670
    • El-Tantawy, S.1    Abdulhai, B.2
  • 11
    • 84871185548 scopus 로고    scopus 로고
    • Towards multi-Agent reinforcement learning for integrated network of optimal traffic controllers (MARLINOTC)
    • Apr. 2010
    • S. El-Tantawy and B. Abdulhai, Towards multi-Agent reinforcement learning for integrated network of optimal traffic controllers (MARLINOTC), Transp. Lett.: Int. J. Transp. Res., vol. 2, pp. 89-110, Apr. 2010.
    • Transp. Lett.: Int. J. Transp. Res. , vol.2 , pp. 89-110
    • El-Tantawy, S.1    Abdulhai, B.2
  • 12
  • 15
    • 40949147745 scopus 로고    scopus 로고
    • A comprehensive survey of multiagent reinforcement learning IEEE
    • Mar. 2008
    • L. Busoniu, R. Babuska, and B. De Schutter, A comprehensive survey of multiagent reinforcement learning, IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 2, pp. 156-172, Mar. 2008.
    • Trans. Syst., Man, Cybern. C, Appl. Rev. , vol.38 , Issue.2 , pp. 156-172
    • Busoniu, L.1    Babuska, R.2    De Schutter, B.3
  • 18
    • 1842538384 scopus 로고    scopus 로고
    • Vehicle traffic light control using sarsa
    • Colo. St. Univ., Fort Collins, CO, USA
    • T. Thorpe, Vehicle traffic light control using sarsa,M.S. thesis, Comput. Sci. Dept., Colo. St. Univ., Fort Collins, CO, USA, 1997.
    • (1997) M.S. Thesis, Comput. Sci. Dept.
    • Thorpe, T.1
  • 19
    • 36249019659 scopus 로고    scopus 로고
    • Multi-Agent reinforcement learning for traffic light control
    • M.Wiering, Multi-Agent reinforcement learning for traffic light control, in Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 1151-1158.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , pp. 1151-1158
    • Wiering, M.1
  • 20
    • 0037616356 scopus 로고    scopus 로고
    • Reinforcement learning for true adaptive traffic signal control
    • Apr. 2003
    • B. Abdulhai, R. Pringle, and G. J. Karakoulas, Reinforcement learning for true adaptive traffic signal control, J. Transp. Eng., vol. 129, no. 3, pp. 278-285, Apr. 2003.
    • J. Transp. Eng. , vol.129 , Issue.3 , pp. 278-285
    • Abdulhai, B.1    Pringle, R.2    Karakoulas, G.J.3
  • 24
    • 77953015097 scopus 로고    scopus 로고
    • Reinforcement learningbased multi-Agent system for network traffic signal control
    • Jun. 2010
    • I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, Reinforcement learningbased multi-Agent system for network traffic signal control, IET Intell. Transp. Syst., vol. 4, no. 2, pp. 128-135, Jun. 2010.
    • IET Intell. Transp. Syst. , vol.4 , Issue.2 , pp. 128-135
    • Arel, I.1    Liu, C.2    Urbanik, T.3    Kohls, A.G.4
  • 25
    • 60749092453 scopus 로고    scopus 로고
    • Adaptive dynamic programming formultiintersections traffic signal intelligent control
    • T. Li, D. B. Zhao, and J. Q. Yi, Adaptive dynamic programming formultiintersections traffic signal intelligent control, in Proc. 11th Int. IEEE Conf. Intell. Transp. Syst., 2008, pp. 286-291.
    • (2008) Proc. 11th Int. IEEE Conf. Intell. Transp. Syst. , pp. 286-291
    • Li, T.1    Zhao, D.B.2    Yi, J.Q.3
  • 27
    • 84930355091 scopus 로고    scopus 로고
    • Q-learning and approximate dynamic programming for traffic control-A case study for an oversaturated network
    • Washington, DC, USA Paper 12-4103
    • J. C. Medina and R. F. Benekohal, Q-learning and approximate dynamic programming for traffic control-A case study for an oversaturated network, presented at the Transp. Res. Board Annu. Meet.,Washington, DC, USA, 2012, Paper 12-4103.
    • (2012) Transp. Res. Board Annu. Meet.
    • Medina, J.C.1    Benekohal, R.F.2
  • 28
    • 49249115891 scopus 로고    scopus 로고
    • Q-Learning for adaptive traffic signal control based on delay minimization strategy
    • L. Shoufeng, L. Ximin, and D. Shiqiang, Q-Learning for adaptive traffic signal control based on delay minimization strategy, in Proc. IEEE Int. Conf. Netw. Sens. Control, 2008, pp. 687-691.
    • (2008) Proc. IEEE Int. Conf. Netw. Sens. Control , pp. 687-691
    • Shoufeng, L.1    Ximin, L.2    Shiqiang, D.3
  • 29
    • 56049125779 scopus 로고    scopus 로고
    • Multiagent reinforcement learning for urban traffic control using coordination graph
    • L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis, Multiagent reinforcement learning for urban traffic control using coordination graph, in Proc. 19th Eur. Conf. Mach. Learn., 2008, pp. 656-671.
    • (2008) Proc. 19th Eur. Conf. Mach. Learn. , pp. 656-671
    • Kuyer, L.1    Whiteson, S.2    Bakker, B.3    Vlassis, N.4
  • 30
    • 33644809850 scopus 로고    scopus 로고
    • A distributed approach for coordination of traffic signal agents
    • Jan. 2005
    • A. L. C. Bazzan, A distributed approach for coordination of traffic signal agents, Autonom. Agents Multi-Agent Syst., vol. 10, no. 1, pp. 131-164, Jan. 2005.
    • Autonom. Agents Multi-Agent Syst. , vol.10 , Issue.1 , pp. 131-164
    • Bazzan, A.L.C.1
  • 31
    • 29344437834 scopus 로고    scopus 로고
    • Networked distributed POMDPs: A synthesis of distributed constraint optimization and POMDPs
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • R. Nair, P. Varakantham, M. Tambe, and M. Yokoo, Networked distributed POMDPs: A synthesis of distributed constraint optimization and POMDPs, in Proc. 20th Nat. Conf. Artif. Intell., 2005, pp. 133-139. (Pubitemid 43006767)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.1 , pp. 133-139
    • Nair, R.1    Varakantham, P.2    Tambe, M.3    Yokoo, M.4
  • 32
  • 34
    • 84930361024 scopus 로고    scopus 로고
    • Comprehensive analysis of reinforcement learning methods and parameters for adaptive traffic signal control presented at the Transp
    • Washington DC, USA
    • S. El-Tantawy and B. Abdulhai, Comprehensive analysis of reinforcement learning methods and parameters for adaptive traffic signal control, presented at the Transp. Res. Board, Washington, DC, USA, 2011.
    • (2011) Res. Board
    • El-Tantawy, S.1    Abdulhai, B.2
  • 35
    • 84883773100 scopus 로고    scopus 로고
    • Neighborhood coordination-Based multi-Agent reinforcement learning for coordinated adaptive traffic signal control presented at the Transp.
    • Washington DC, USA
    • S. El-Tantawy and B. Abdulhai, Neighborhood coordination-Based multi-Agent reinforcement learning for coordinated adaptive traffic signal control, presented at the Transp. Res. Board, Washington, DC, USA, 2012.
    • (2012) Res. Board
    • El-Tantawy, S.1    Abdulhai, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.