메뉴 건너뛰기




Volumn 30, Issue 6, 2003, Pages 981-991

Reinforcement learning: Introduction to theory and potential for transport applications

Author keywords

Artificial intelligence; Intelligent transportation systems; Machine learning; Reinforcement learning; Traffic control

Indexed keywords

CIVIL ENGINEERING; INTELLIGENT NETWORKS; LEARNING ALGORITHMS; REINFORCEMENT; TRAFFIC CONTROL;

EID: 1842427901     PISSN: 03151468     EISSN: None     Source Type: Journal    
DOI: 10.1139/l03-014     Document Type: Article
Times cited : (99)

References (28)
  • 1
    • 1842486388 scopus 로고    scopus 로고
    • [online]. Available from [accesssed on December]
    • Artificial intelligence depot [online]. Available from http://reinforcementlearning.ai-depot.com/ [accesssed on December 2001].
    • (2001) Artificial Intelligence Depot
  • 2
    • 1842538395 scopus 로고    scopus 로고
    • Reinforcement learning for ITS: Introduction and a case study on adaptive traffic signal control transportation research board
    • Washington, D.C., 7-11 January 2001
    • Abdulhai, B., Pringle, R., and Karakoulas, G.J. 2001. Reinforcement learning for ITS: Introduction and a case study on adaptive traffic signal control transportation research board, Transportation Research Board 80th Annual Meeting, Washington, D.C., 7-11 January 2001.
    • (2001) Transportation Research Board 80th Annual Meeting
    • Abdulhai, B.1    Pringle, R.2    Karakoulas, G.J.3
  • 5
    • 85151728371 scopus 로고
    • Residual algorithms reinforcement learning with function approximation
    • San Francisco, Calif., 9-12 July 1995. Morgan Kaufman Publishers. San Francisco, Calif
    • Baird, L. 1995. Residual algorithms reinforcement learning with function approximation. In Proceedings of the 12th International Conference on Machine Learning, San Francisco, Calif., 9-12 July 1995. Morgan Kaufman Publishers. San Francisco, Calif. pp. 30-37.
    • (1995) Proceedings of the 12th International Conference on Machine Learning , pp. 30-37
    • Baird, L.1
  • 7
    • 0035372090 scopus 로고    scopus 로고
    • Reinforcement learning in neurofuzzy traffic signal control
    • Bingham, E. 2001. Reinforcement learning in neurofuzzy traffic signal control. European Journal of Operation Research, 131: 232-241.
    • (2001) European Journal of Operation Research , vol.131 , pp. 232-241
    • Bingham, E.1
  • 8
    • 85156187730 scopus 로고    scopus 로고
    • Improving elevator performance using reinforcement learning
    • MIT Press, Cambridge, Mass
    • Crites, R.H., and Barto, A.G. 1996. 9. Improving elevator performance using reinforcement learning. In Advances in neural information processing systems. MIT Press, Cambridge, Mass. pp. 1017-1023.
    • (1996) Advances in Neural Information Processing Systems , pp. 1017-1023
    • Crites, R.H.1    Barto, A.G.2
  • 11
    • 1842434066 scopus 로고    scopus 로고
    • [online]. Available from [accessed on December 2001]
    • Langley, P. [online]. Available from http://newatlantis.isle.org/~langley/ [accessed on December 2001].
    • Langley, P.1
  • 13
    • 84925080315 scopus 로고    scopus 로고
    • Fuzzy model-based reinforcement learning
    • Aachen, Germany, 14-15 September 2000
    • Martin, A., and Brauer, W. 2000. Fuzzy model-based reinforcement learning, European Symposium on Intelligent Techniques (ESIT), Aachen, Germany, 14-15 September 2000, pp. 14-15.
    • (2000) European Symposium on Intelligent Techniques (ESIT) , pp. 14-15
    • Martin, A.1    Brauer, W.2
  • 18
    • 0000230403 scopus 로고    scopus 로고
    • Foundations of dynamic traffic assignment: The past, the present and the future
    • Peeta
    • Peeta. 2001. Foundations of dynamic traffic assignment: the past, the present and the future. Networks and Spatial Economics, 1: 223-265.
    • (2001) Networks and Spatial Economics , vol.1 , pp. 223-265
  • 19
    • 0033714691 scopus 로고    scopus 로고
    • Distributed reinforcement learning for a traffic engineering application
    • Barcelona, Spain. ACM, New York, N.Y
    • Pendrith, M.D. 2000. Distributed reinforcement learning for a traffic engineering application In Proceedings of the 4th International Conference on Autonomous Agents, Barcelona, Spain. ACM, New York, N.Y., pp. 404-411.
    • (2000) Proceedingsof the 4th International Conference on Autonomous Agents , pp. 404-411
    • Pendrith, M.D.1
  • 20
    • 0003420416 scopus 로고    scopus 로고
    • [online]. Available from [accessed on December 2001]
    • Perez, A. 1998. Introduction to reinforcement learning [online]. Available from http://lslwww.epfl.ch/~aperez/RL/RL.html [accessed on December 2001].
    • (1998) Introduction to Reinforcement Learning
    • Perez, A.1
  • 22
    • 33847202724 scopus 로고
    • Learning to predict by the methods of temporal differences
    • Sutton, R. 1988. Learning to predict by the methods of temporal differences. Machine Learning, 3: 9-44.
    • (1988) Machine Learning , vol.3 , pp. 9-44
    • Sutton, R.1
  • 23
    • 0004007508 scopus 로고    scopus 로고
    • [online]. Available from [accessed on December 2001]
    • Sutton, R. 1999. Reinforcement learning: past, present and future? [online]. Available from http://www-anw.cs.umass.edu/~rich/ Talks/SEAL98/SEAL98.html [accessed on December 2001].
    • (1999) Reinforcement Learning: Past, Present and Future?
    • Sutton, R.1
  • 25
    • 0029276036 scopus 로고
    • Temporal difference learning and TD-Gammon
    • Tesauro, G.J. 1995. Temporal difference learning and TD-Gammon. Communications of the ACM, 38: 58-68.
    • (1995) Communications of the ACM , vol.38 , pp. 58-68
    • Tesauro, G.J.1
  • 26
    • 1842538384 scopus 로고    scopus 로고
    • Master's Project Report. Computer Science Department, Colorado State University, Colo
    • Thorpe, T.L. 1997. Vehicle traffic light control using SARSA. Master's Project Report. Computer Science Department, Colorado State University, Colo.
    • (1997) Vehicle Traffic Light Control Using SARSA
    • Thorpe, T.L.1
  • 27
    • 1842486383 scopus 로고    scopus 로고
    • Learning to control traffic lights with multi-agent reinforcement learning
    • Utrecht, Netherlands, Basque Country University and Foundation B.B.V. Bilbao, Spain
    • Wiering, M.A. 2000. Learning to control traffic lights with multi-agent reinforcement learning, First World Congress of the Game Theory Society Games 2000, Utrecht, Netherlands, Basque Country University and Foundation B.B.V. Bilbao, Spain.
    • (2000) First World Congress of the Game Theory Society Games 2000
    • Wiering, M.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.