메뉴 건너뛰기




Volumn 128, Issue , 2013, Pages 111-117

Estimation of predictive accuracy of soft sensor models based on data density

Author keywords

Applicability domains; Distances to models; One class support vector machine; Predictive accuracy; Soft sensor

Indexed keywords

ACCURACY; ANALYTICAL ERROR; AREA UNDER COVERAGE AND ROOT MEAN SQUARE ERROR CURVE; ARTICLE; COMPARATIVE STUDY; COMPUTER SIMULATION; CONTROLLED STUDY; DATA DENSITY; DISTANCE TO SOFT SENSOR MODEL; EUCLIDEAN DISTANCE; FLOW RATE; INFORMATION PROCESSING; K NEAREST NEIGHBOR; MAHALANOBIS DISTANCE; MELT FLOW RATE; NONLINEAR SYSTEM; ONE CLASS SUPPORT VECTOR MACHINE; PREDICTIVE VALUE; PRIORITY JOURNAL; QUANTITATIVE ANALYSIS; STATISTICAL DISTRIBUTION; STATISTICAL MODEL; STATISTICAL PARAMETERS; SUPPORT VECTOR MACHINE;

EID: 84883613892     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2013.08.005     Document Type: Article
Times cited : (16)

References (21)
  • 1
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
    • Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 2008, 32:12-24.
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 2
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 3
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C., Chiu M.S. A new data-based methodology for nonlinear process modeling. Chem. Eng. Sci. 2004, 59:2801-2810.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 4
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AICHE J. 2009, 55:87-98.
    • (2009) AICHE J. , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 5
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AICHE J. 2010, 57:1288-1301.
    • (2010) AICHE J. , vol.57 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 6
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P., Grbic R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2011, 35:1-24.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Grbic, R.2    Gabrys, B.3
  • 7
    • 79959784751 scopus 로고    scopus 로고
    • Maintenance-free soft sensor models with time difference of process variables
    • Kaneko H., Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom. Intell. Lab. Syst. 2011, 107:312-317.
    • (2011) Chemom. Intell. Lab. Syst. , vol.107 , pp. 312-317
    • Kaneko, H.1    Funatsu, K.2
  • 8
    • 80055094175 scopus 로고    scopus 로고
    • A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
    • Kaneko H., Funatsu K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom. Intell. Lab. Syst. 2011, 109:197-206.
    • (2011) Chemom. Intell. Lab. Syst. , vol.109 , pp. 197-206
    • Kaneko, H.1    Funatsu, K.2
  • 9
    • 80052838846 scopus 로고    scopus 로고
    • Development of soft sensor models based on time difference of process variables accounting for nonlinear relationship between the variables
    • Kaneko H., Funatsu K. Development of soft sensor models based on time difference of process variables accounting for nonlinear relationship between the variables. Ind. Eng. Chem. Res. 2011, 50:10643-10651.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 10643-10651
    • Kaneko, H.1    Funatsu, K.2
  • 10
    • 79955611348 scopus 로고    scopus 로고
    • Applicability domains and accuracy of prediction of soft sensor models
    • Kaneko H., Arakawa M., Funatsu K. Applicability domains and accuracy of prediction of soft sensor models. AICHE J. 2011, 57:1506-1513.
    • (2011) AICHE J. , vol.57 , pp. 1506-1513
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 11
    • 54249125512 scopus 로고    scopus 로고
    • Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection
    • Tetko I.V., Sushko I., Pandey A.K., Zhu H., Tropsha A., Papa E., Öberg T., Todeschini R., Fourches D., Varnek A. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J. Chem. Inf. Model. 2008, 48:1733-1746.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1733-1746
    • Tetko, I.V.1    Sushko, I.2    Pandey, A.K.3    Zhu, H.4    Tropsha, A.5    Papa, E.6    Öberg, T.7    Todeschini, R.8    Fourches, D.9    Varnek, A.10
  • 12
    • 68149160790 scopus 로고    scopus 로고
    • Predicting the predictability: a unified approach to the applicability domain problem of QSAR models
    • Horvath D., Marcou G., Varnek A. Predicting the predictability: a unified approach to the applicability domain problem of QSAR models. J. Chem. Inf. Model. 2009, 49:1762-1776.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1762-1776
    • Horvath, D.1    Marcou, G.2    Varnek, A.3
  • 14
    • 78650201311 scopus 로고    scopus 로고
    • The one-class classification approach to data description and to models applicability domain
    • Baskin I.I., Kireeva N., Varnek A. The one-class classification approach to data description and to models applicability domain. Mol. Inform. 2010, 29:581-587.
    • (2010) Mol. Inform. , vol.29 , pp. 581-587
    • Baskin, I.I.1    Kireeva, N.2    Varnek, A.3
  • 15
    • 77953702262 scopus 로고    scopus 로고
    • Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques
    • Balabin R.M., Safieva R.Z., Lomakina E.I. Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques. Anal. Chim. Acta 2010, 671:27-35.
    • (2010) Anal. Chim. Acta , vol.671 , pp. 27-35
    • Balabin, R.M.1    Safieva, R.Z.2    Lomakina, E.I.3
  • 16
    • 79952040991 scopus 로고    scopus 로고
    • Near-infrared (NIR) spectroscopy for motor oil classification: from discriminant analysis to support vector machines
    • Balabin R.M., Safieva R.Z., Lomakina E.I. Near-infrared (NIR) spectroscopy for motor oil classification: from discriminant analysis to support vector machines. Microchem. J. 2011, 98:121-128.
    • (2011) Microchem. J. , vol.98 , pp. 121-128
    • Balabin, R.M.1    Safieva, R.Z.2    Lomakina, E.I.3
  • 18
    • 79955476246 scopus 로고    scopus 로고
    • Novel soft sensor method for detecting completion of transition in industrial polymer processes
    • Kaneko H., Arakawa M., Funatsu K. Novel soft sensor method for detecting completion of transition in industrial polymer processes. Comput. Chem. Eng. 2011, 35:1135-1142.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1135-1142
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 19
    • 84860639429 scopus 로고    scopus 로고
    • A new process variable and dynamics selection method based on a genetic algorithm-based wavelength selection method
    • Kaneko H., Funatsu K. A new process variable and dynamics selection method based on a genetic algorithm-based wavelength selection method. AICHE J. 2012, 58:1829-1840.
    • (2012) AICHE J. , vol.58 , pp. 1829-1840
    • Kaneko, H.1    Funatsu, K.2
  • 21
    • 77957931490 scopus 로고    scopus 로고
    • Applicability of near-infrared spectroscopy for process monitoring in bioethanol production
    • Liebmann B., Friedl A., Varmuza K. Applicability of near-infrared spectroscopy for process monitoring in bioethanol production. Biochem. Eng. J. 2010, 52:187-193.
    • (2010) Biochem. Eng. J. , vol.52 , pp. 187-193
    • Liebmann, B.1    Friedl, A.2    Varmuza, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.