메뉴 건너뛰기




Volumn 5, Issue 13, 2013, Pages 6117-6123

A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube

Author keywords

[No Author keywords available]

Indexed keywords

CONTROL SAMPLES; NANOGENERATOR; NANOGENERATORS; NANOPARTICLE (NPS); OUTPUT VOLTAGES; POLYDIMETHYLSILOXANE PDMS; POWER DENSITIES; ZNO NANOPARTICLES;

EID: 84883245679     PISSN: 20403364     EISSN: 20403372     Source Type: Journal    
DOI: 10.1039/c3nr00866e     Document Type: Article
Times cited : (137)

References (31)
  • 1
    • 85050782717 scopus 로고    scopus 로고
    • The final energy crisis
    • M. Hudson The final energy crisis Environ. Pollut. 2006 15 677 679
    • (2006) Environ. Pollut. , vol.15 , pp. 677-679
    • Hudson, M.1
  • 2
    • 26844438506 scopus 로고    scopus 로고
    • Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology
    • W. L. Ma C. Y. Yang X. Gong K. Lee A. J. Heeger Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology Adv. Funct. Mater. 2005 15 1617 1622
    • (2005) Adv. Funct. Mater. , vol.15 , pp. 1617-1622
    • Ma, W.L.1    Yang, C.Y.2    Gong, X.3    Lee, K.4    Heeger, A.J.5
  • 3
    • 0042166664 scopus 로고
    • America Reaps the Wind Harvest
    • J. Mcgowan America Reaps the Wind Harvest New Sci. 1993 139 30 33
    • (1993) New Sci. , vol.139 , pp. 30-33
    • McGowan, J.1
  • 4
    • 0030426215 scopus 로고    scopus 로고
    • Patterns of aquatic weed regrowth following mechanical harvesting in New Zealand hydro-lakes
    • C. Howard-Williams A. M. Schwarz V. Reid Patterns of aquatic weed regrowth following mechanical harvesting in New Zealand hydro-lakes Hydrobiologia 1996 340 229 234
    • (1996) Hydrobiologia , vol.340 , pp. 229-234
    • Howard-Williams, C.1    Schwarz, A.M.2    Reid, V.3
  • 5
    • 3042728218 scopus 로고    scopus 로고
    • Economics of a coordinated biorefinery feedstock harvest system: Lignocellulosic biomass harvest cost
    • S. Thorsell F. M. Epplin R. L. Huhnke C. M. Taliaferro Economics of a coordinated biorefinery feedstock harvest system: lignocellulosic biomass harvest cost Biomass Bioenergy 2004 27 327 337
    • (2004) Biomass Bioenergy , vol.27 , pp. 327-337
    • Thorsell, S.1    Epplin, F.M.2    Huhnke, R.L.3    Taliaferro, C.M.4
  • 6
    • 0141493439 scopus 로고    scopus 로고
    • Harnessing tidal energy takes new turn
    • C. Lang Harnessing tidal energy takes new turn IEEE Spectrum 2003 40 13 13
    • (2003) IEEE Spectrum , vol.40 , pp. 13-13
    • Lang, C.1
  • 7
    • 84883225284 scopus 로고    scopus 로고
    • Harvest the wind America's journey to jobs, energy independence, and climate stability
    • D. Reicher Harvest the wind America's journey to jobs, energy independence, and climate stability Science 2012 336 672 672
    • (2012) Science , vol.336 , pp. 672-672
    • Reicher, D.1
  • 8
    • 33845874101 scopus 로고    scopus 로고
    • An obesity-associated gut microbiome with increased capacity for energy harvest
    • P. J. Turnbaugh et al. An obesity-associated gut microbiome with increased capacity for energy harvest Nature 2006 444 1027 1031
    • (2006) Nature , vol.444 , pp. 1027-1031
    • Turnbaugh, P.J.1
  • 9
    • 84255177931 scopus 로고    scopus 로고
    • Electromechanical analysis of a beam piezoelectric transducer energy harvest device
    • M. H. Xu B. Wang Electromechanical analysis of a beam piezoelectric transducer energy harvest device Adv. Mater. Res. 2012 415-417 1114 1120
    • (2012) Adv. Mater. Res. , vol.415-417 , pp. 1114-1120
    • Xu, M.H.1    Wang, B.2
  • 10
    • 77955212882 scopus 로고    scopus 로고
    • Sensor shape design for piezoelectric cantilever beams to harvest vibration energy
    • M. I. Friswell S. Adhikari Sensor shape design for piezoelectric cantilever beams to harvest vibration energy J. Appl. Phys. 2010 108 014901
    • (2010) J. Appl. Phys. , vol.108 , pp. 014901
    • Friswell, M.I.1    Adhikari, S.2
  • 11
    • 84860385153 scopus 로고    scopus 로고
    • Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration Frequency
    • C. L. Hsu K. C. Chen Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration Frequency J. Phys. Chem. C 2012 116 9351 9355
    • (2012) J. Phys. Chem. C , vol.116 , pp. 9351-9355
    • Hsu, C.L.1    Chen, K.C.2
  • 12
    • 84863328123 scopus 로고    scopus 로고
    • Synthesis of Ga-doped ZnO nanorods using an aqueous solution method for a piezoelectric nanogenerator
    • J. H. Lee K. Y. Lee B. Kumar S. W. Kim Synthesis of Ga-doped ZnO nanorods using an aqueous solution method for a piezoelectric nanogenerator J. Nanosci. Nanotechnol. 2012 12 3430 3433
    • (2012) J. Nanosci. Nanotechnol. , vol.12 , pp. 3430-3433
    • Lee, J.H.1    Lee, K.Y.2    Kumar, B.3    Kim, S.W.4
  • 13
    • 80052539474 scopus 로고    scopus 로고
    • A novel method to measure the generated voltage of a ZnO nanogenerator
    • T. S. van den Heever U. Buttner A. J. Perold A novel method to measure the generated voltage of a ZnO nanogenerator Nanotechnology 2011 22 395204
    • (2011) Nanotechnology , vol.22 , pp. 395204
    • Van Den Heever, T.S.1    Buttner, U.2    Perold, A.J.3
  • 14
    • 80052059400 scopus 로고    scopus 로고
    • Et al. Anisotropic outputs of a nanogenerator from oblique-aligned ZnO nanowire arrays
    • C. Y. Chen et al. Anisotropic outputs of a nanogenerator from oblique-aligned ZnO nanowire arrays ACS Nano 2011 5 6707 6713
    • (2011) ACS Nano , vol.5 , pp. 6707-6713
    • Chen, C.Y.1
  • 15
    • 79954517177 scopus 로고    scopus 로고
    • Et al. Vertically integrated nanogenerator based on ZnO nanowire arrays
    • A. F. Yu et al. Vertically integrated nanogenerator based on ZnO nanowire arrays Phys. Status Solidi RRL 2011 5 162 164
    • (2011) Phys. Status Solidi RRL , vol.5 , pp. 162-164
    • Yu, A.F.1
  • 16
    • 79951682187 scopus 로고    scopus 로고
    • Et al. AFM analysis of piezoelectric nanogenerator based on n(+)-diamond/n-ZnO heterojunction
    • Z. Z. Shao et al. AFM analysis of piezoelectric nanogenerator based on n(+)-diamond/n-ZnO heterojunction Appl. Surf. Sci. 2011 257 4919 4922
    • (2011) Appl. Surf. Sci. , vol.257 , pp. 4919-4922
    • Shao, Z.Z.1
  • 17
    • 79953002606 scopus 로고    scopus 로고
    • Time-dependent degradation of Pt/ZnO nanoneedle rectifying contact based piezoelectric nanogenerator
    • C. Periasamy P. Chakrabarti Time-dependent degradation of Pt/ZnO nanoneedle rectifying contact based piezoelectric nanogenerator J. Appl. Phys. 2011 109 054306
    • (2011) J. Appl. Phys. , vol.109 , pp. 054306
    • Periasamy, C.1    Chakrabarti, P.2
  • 19
    • 78649955823 scopus 로고    scopus 로고
    • Et al. Pt/ZnO Schottky nano-contact for piezoelectric nanogenerator
    • Z. Z. Shao et al. Pt/ZnO Schottky nano-contact for piezoelectric nanogenerator Phys. E. 2010 43 173 175
    • (2010) Phys. E. , vol.43 , pp. 173-175
    • Shao, Z.Z.1
  • 20
    • 77958508113 scopus 로고    scopus 로고
    • Physical properties of ZnO: Al nanorods for piezoelectric nanogenerator application
    • T. H. Fang S. H. Kang Physical properties of ZnO: Al nanorods for piezoelectric nanogenerator application Curr. Nanosci. 2010 6 505 511
    • (2010) Curr. Nanosci. , vol.6 , pp. 505-511
    • Fang, T.H.1    Kang, S.H.2
  • 21
    • 77955583635 scopus 로고    scopus 로고
    • Flexible high-output nanogenerator based on lateral ZnO nanowire array
    • G. A. Zhu R. S. Yang S. H. Wang Z. L. Wang Flexible high-output nanogenerator based on lateral ZnO nanowire array Nano Lett. 2010 10 3151 3155
    • (2010) Nano Lett. , vol.10 , pp. 3151-3155
    • Zhu, G.A.1    Yang, R.S.2    Wang, S.H.3    Wang, Z.L.4
  • 22
    • 70349089062 scopus 로고    scopus 로고
    • Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator
    • S. S. Lin J. H. Song Y. F. Lu Z. L. Wang Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator Nanotechnology 2009 20 365703
    • (2009) Nanotechnology , vol.20 , pp. 365703
    • Lin, S.S.1    Song, J.H.2    Lu, Y.F.3    Wang, Z.L.4
  • 23
    • 65249189519 scopus 로고    scopus 로고
    • Et al. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays
    • M. P. Lu et al. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays Nano Lett. 2009 9 1223 1227
    • (2009) Nano Lett. , vol.9 , pp. 1223-1227
    • Lu, M.P.1
  • 24
    • 84863066413 scopus 로고    scopus 로고
    • Local piezoelectric response of ZnO nanoparticles embedded in a photosensitive polymer
    • K. Prashanthi H. Zhang V. Ramgopal Rao T. Thundat Local piezoelectric response of ZnO nanoparticles embedded in a photosensitive polymer Phys. Status Solidi RRL 2012 6 77 79
    • (2012) Phys. Status Solidi RRL , vol.6 , pp. 77-79
    • Prashanthi, K.1    Zhang, H.2    Ramgopal Rao, V.3    Thundat, T.4
  • 25
    • 84866051095 scopus 로고    scopus 로고
    • Et al. Photopatternable nano-composite (SU-8/ZnO) thin films for piezo-electric applications
    • M. Kandpal et al. Photopatternable nano-composite (SU-8/ZnO) thin films for piezo-electric applications Appl. Phys. Lett. 2012 101 104102 104105
    • (2012) Appl. Phys. Lett. , vol.101 , pp. 104102-104105
    • Kandpal, M.1
  • 26
    • 82555192865 scopus 로고    scopus 로고
    • Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials
    • S. Dai M. Gharbi P. Sharma H. S. Park Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials J. Appl. Phys. 2011 110 104305 104307
    • (2011) J. Appl. Phys. , vol.110 , pp. 104305-104307
    • Dai, S.1    Gharbi, M.2    Sharma, P.3    Park, H.S.4
  • 27
    • 41549112911 scopus 로고    scopus 로고
    • Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect
    • M. Majdoub P. Sharma T. Cagin Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect Phys. Rev. B: Condens. Matter Mater. Phys. 2008 77 125424
    • (2008) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.77 , pp. 125424
    • Majdoub, M.1    Sharma, P.2    Cagin, T.3
  • 28
    • 65249189519 scopus 로고    scopus 로고
    • Et al. Piezoelectric nanogenerator using p-type ZnO nanowire arrays
    • M.-P. Lu et al. Piezoelectric nanogenerator using p-type ZnO nanowire arrays Nano Lett. 2009 9 1223 1227
    • (2009) Nano Lett. , vol.9 , pp. 1223-1227
    • Lu, M.-P.1
  • 29
    • 77950837003 scopus 로고    scopus 로고
    • Et al. GaN nanowire arrays for high-output nanogenerators
    • C.-T. Huang et al. GaN nanowire arrays for high-output nanogenerators J. Am. Chem. Soc. 2010 132 4766 4771
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 4766-4771
    • Huang, C.-T.1
  • 30
    • 76749162390 scopus 로고    scopus 로고
    • Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency
    • C. Chang V. H. Tran J. Wang Y.-K. Fuh L. Lin Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency Nano Lett. 2010 10 726 731
    • (2010) Nano Lett. , vol.10 , pp. 726-731
    • Chang, C.1    Tran, V.H.2    Wang, J.3    Fuh, Y.-K.4    Lin, L.5
  • 31
    • 84861832877 scopus 로고    scopus 로고
    • 3 nanoparticles and graphitic carbons
    • 3 nanoparticles and graphitic carbons Adv. Mater. 2012 24 2999 3004
    • (2012) Adv. Mater. , vol.24 , pp. 2999-3004
    • Park, K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.