메뉴 건너뛰기




Volumn 60, Issue 9, 2013, Pages 2472-2483

Unsupervised spatiotemporal analysis of FMRI data using graph-based visualizations of self-organizing maps

Author keywords

Functional MRI (fMRI); reaction time; self organizing map; SOM visualization

Indexed keywords

ADVANCED VISUALIZATIONS; ARTIFICIAL NEURAL NETWORK MODELING; FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) ANALYSIS; FUNCTIONAL MRI (FMRI); GRAPH-BASED VISUALIZATION; HIGH DIMENSIONAL DATA; POST-PROCESSING SCHEME; SPATIOTEMPORAL ANALYSIS;

EID: 84883005871     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2013.2258344     Document Type: Article
Times cited : (20)

References (41)
  • 2
    • 0032216613 scopus 로고    scopus 로고
    • Spatio-temporal fMRI analysis using markov random fields
    • PII S0278006298094233
    • X.Descombes, F.Kruggel, andD. Y. von Cramon, "Spatio-temporal fMRI analysis using Markov random fields," IEEE Trans. Med. Imag., vol. 17, no. 6, pp. 1028-1039, Dec. 1998. (Pubitemid 128747761)
    • (1998) IEEE Transactions on Medical Imaging , vol.17 , Issue.6 , pp. 1028-1039
    • Descombes, X.1    Kruggel, F.2    Von Yves Cramon, D.3
  • 3
    • 0033624947 scopus 로고    scopus 로고
    • Probabilistic modeling of single trial fMRI data
    • Jan
    • M. Svenśen, F.Kruggel, andD. Y. von Cramen, "Probabilistic modeling of single trial fMRI data," IEEE Trans.Med. Imag., vol. 19, no. 1, pp. 25-36, Jan. 2000.
    • (2000) IEEE Trans.Med. Imag , vol.19 , Issue.1 , pp. 25-36
    • Svenśen, M.1    Kruggel, F.2    Von Cramen, D.Y.3
  • 4
    • 13244273665 scopus 로고    scopus 로고
    • Hidden Markov event sequence models: Toward unsupervised functional MRI brain mapping
    • DOI 10.1016/j.acra.2004.09.012, PII S1076633204006427
    • S. Faisan, L. Thoraval, J. P. Armspach, J. R. Foucher, M. N. Metz-Lutz, and F. Heitz, "Hidden Markov event sequence models: Toward unsupervised functionalMRI brain," Acad. Radiol., vol. 12, no. 1, pp. 25-36, Jan. 2005. (Pubitemid 40187285)
    • (2005) Academic Radiology , vol.12 , Issue.1 , pp. 25-36
    • Faisan, S.1    Thoraval, L.2    Armspach, J.-P.3    Foucher, J.R.4    Metz-Lutz, M.-N.5    Heitz, F.6
  • 5
    • 0030733807 scopus 로고    scopus 로고
    • Empirical analyses of bold fmri statistics
    • Apr
    • E. Zarahn, G. K. Aguirre, and M. D'Esposito, "Empirical analyses of BOLD fMRI statistics," Neuroimage, vol. 5, no. 3, pp. 179-197, Apr. 1997.
    • (1997) Neuroimage , vol.5 , Issue.3 , pp. 179-197
    • Zarahn, E.1    Aguirre, G.K.2    D'Esposito, M.3
  • 7
    • 0010323416 scopus 로고
    • Potential pitfalls of principal component analysis in fMRI
    • presented at the Nice, France
    • T. H. Le and X. Hu, "Potential pitfalls of principal component analysis in fMRI," presented at the Int. Soc.Mag. Reson. Med. 3, Nice, France, 1995, p. 820.
    • (1995) Int. Soc.Mag. Reson. Med , vol.3 , pp. 820
    • Le, T.H.1    Hu, X.2
  • 8
    • 0035033714 scopus 로고    scopus 로고
    • Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms
    • DOI 10.1002/hbm.1024
    • V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar, "Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms," Human Brain Mapping, vol. 13, no. 1, pp. 43-53, May 2001. (Pubitemid 32374513)
    • (2001) Human Brain Mapping , vol.13 , Issue.1 , pp. 43-53
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 9
    • 0031861367 scopus 로고    scopus 로고
    • Analysis of fMRI data by blind separation into independent spatial components
    • DOI 10.1002/ (SICI) 1097-0193 (1998)6:3<160::AID-HBM5>3.0.CO;2-1
    • M. J. McKeown, S. Makeig, G. G. Brown, T. P. Jung, S. S. Kindermann, A. J. Bell, and T. J. Sejnowski, "Analysis of fMRI data by blind separation into independent spatial components," Human Brain Mapping, vol. 6, no. 3, pp. 160-188, 1998. (Pubitemid 28247339)
    • (1998) Human Brain Mapping , vol.6 , Issue.3 , pp. 160-188
    • McKeown, M.J.1    Makeig, S.2    Brown, G.G.3    Jung, T.-P.4    Kindermann, S.S.5    Bell, A.J.6    Sejnowski, T.J.7
  • 11
    • 0032796478 scopus 로고    scopus 로고
    • On clustering fMRI time series
    • DOI 10.1006/nimg.1998.0391
    • C. Goutte, P. Toft, E. Rostrup, F. A. Nielsen, and L.K. Hansen, "On clustering fMRI time series," Neuroimage, vol. 9, no. 3, pp. 298-310, Mar. 1999. (Pubitemid 29369868)
    • (1999) NeuroImage , vol.9 , Issue.3 , pp. 298-310
    • Goutte, C.1    Toft, P.2    Rostrup, E.3    Nielsen, F.A.4    Hansen, L.K.5
  • 13
    • 50249147764 scopus 로고    scopus 로고
    • AnMRF spatial fuzzy clusteringmethod for fMRI SPMs
    • Oct
    • L. He and I. R.Greenshields, "AnMRF spatial fuzzy clusteringmethod for fMRI SPMs," Biomed. Signal Process. Control, vol. 3, no. 4, pp. 327-333, Oct. 2008.
    • (2008) Biomed. Signal Process. Control , vol.3 , Issue.4 , pp. 327-333
    • He, L.1    Greenshields, I.R.2
  • 14
    • 0002883489 scopus 로고
    • Analysis of time course functional MRI data with clustering method without the use of reference signal
    • presented at the Proc San Francisco, CA, USA
    • X. Ding, J. Tkach, P. Ruggieri, and T. Masaryk, "Analysis of time course functional MRI data with clustering method without the use of reference signal," presented at the Proc. Int. Soc. Mag. Reson. Med. 17, San Francisco, CA, USA, 1995, p. 630.
    • (1995) Int. Soc. Mag. Reson. Med , vol.17 , pp. 630
    • Ding, X.1    Tkach, J.2    Ruggieri, P.3    Masaryk, T.4
  • 15
    • 0036563292 scopus 로고    scopus 로고
    • Hierarchical clustering to measure connectivity in fMRI resting statedata
    • May
    • H. Cordes, V. Haughton, J. D. Carew, K. Arfanakis, and K. Maravilla, "Hierarchical clustering to measure connectivity in fMRI resting statedata," Magn. Reson. Imag., vol. 20, no. 4, pp. 305-317, May 2002.
    • (2002) Magn. Reson. Imag , vol.20 , Issue.4 , pp. 305-317
    • Cordes, H.1    Haughton, V.2    Carew, J.D.3    Arfanakis, K.4    Maravilla, K.5
  • 16
    • 33344472605 scopus 로고    scopus 로고
    • An integrated neighborhood correlation and hierarchical clustering approach of functional MRI
    • DOI 10.1109/TBME.2005.869660, 1597495
    • H. Chen, H. Yuan, D. Yao, L. Chen, and W. Chen, "An integrated neighborhood correlation and hierarchical clustering approach of functional MRI," IEEE Trans. Biomed. Eng., vol. 53, no. 3, pp. 452-458, Mar. 2006. (Pubitemid 43288822)
    • (2006) IEEE Transactions on Biomedical Engineering , vol.53 , Issue.3 , pp. 452-458
    • Chen, H.1    Yuan, H.2    Yao, D.3    Chen, L.4    Chen, W.5
  • 17
    • 1542512548 scopus 로고    scopus 로고
    • Model-free functional MRI analysis based on unsupervised clustering
    • DOI 10.1016/j.jbi.2003.12.002, PII S1532046403001321
    • A. Wism̈uller, A. Meyer-B̈ase, O. Lange, D. Auer, M. F. Reiser, and D. Sumners, "Model-free functional MRI analysis based on unsupervised learning," J. Biomed. Inf., vol. 37, no. 1, pp. 10-18, Feb. 2004. (Pubitemid 38338548)
    • (2004) Journal of Biomedical Informatics , vol.37 , Issue.1 , pp. 10-18
    • Wismuller, A.1    Meyer-Base, A.2    Lange, O.3    Auer, D.4    Reiser, M.F.5    Sumners, D.6
  • 18
    • 0032958562 scopus 로고    scopus 로고
    • Neural network-based analysis of MR time series
    • DOI 10.1002 /(SICI) 1522-2594 (199901)41:1<124::AID-MRM17>3.0.CO;2- 9
    • H. Fischer and J. Hennig, "Neural network-based analysis of MR time series," Magn. Reson. Med., vol. 41, no. 1, pp. 124-131, Jan. 1999. (Pubitemid 29068043)
    • (1999) Magnetic Resonance in Medicine , vol.41 , Issue.1 , pp. 124-131
    • Fischer, H.1    Hennig, J.2
  • 19
    • 0032898970 scopus 로고    scopus 로고
    • Analysis of functional magnetic resonance imaging data using self- organizing mapping with spatial connectivity
    • DOI 10.1002 /(SICI) 1522-2594 (199905)41:5<939::AID-MRM13>3.0.CO;2- Q
    • S.-C. Ngan and X. Hu, "Analysis of functional magnetic resonance imaging data using self-organizing map with spatial connectivity," Magn. Reson. Med., vol. 41, no. 5, pp. 939-946, May 1999. (Pubitemid 29211137)
    • (1999) Magnetic Resonance in Medicine , vol.41 , Issue.5 , pp. 939-946
    • Ngan, S.-C.1    Hu, X.2
  • 20
    • 0033233279 scopus 로고    scopus 로고
    • Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means
    • Dec
    • K. H. Chuang, M. H. Chiu, C.C. Lin, and J. H. Chen, "Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means," IEEE Trans. Med. Imag., vol. 28, no. 12, pp. 1117-1128, Dec. 1999.
    • (1999) IEEE Trans. Med. Imag , vol.28 , Issue.12 , pp. 1117-1128
    • Chuang, K.H.1    Chiu, M.H.2    Lin, C.C.3    Chen, J.H.4
  • 21
    • 0345689402 scopus 로고    scopus 로고
    • Detecting Low-Frequency Functional Connectivity in fMRI Using a Self-Organizing Map (SOM) Algorithm
    • DOI 10.1002/hbm.10144
    • S. J. Peltier, T. A. Polk, and D. C. Noll, "Detecting low-frequency functional connectivity in fMRI using a self-organizing map (SOM) algorithm," Human Brain Mapping, vol. 20, no. 4, pp. 220-226, Aug. 2003. (Pubitemid 37486893)
    • (2003) Human Brain Mapping , vol.20 , Issue.4 , pp. 220-226
    • Peltier, S.J.1    Polk, T.A.2    Noll, D.C.3
  • 22
    • 52649093901 scopus 로고    scopus 로고
    • Analysis of fMRI data using improved self-organizing map and spatio-temporal metric hierarchical clustering
    • Oct
    • W. Liao, H. Chen, Q. Yang, and X. Lei, "Analysis of fMRI data using improved self-organizing map and spatio-temporal metric hierarchical clustering," IEEE Trans. Med. Imag., vol. 27, no. 10, pp. 1472-1483, Oct. 2008.
    • (2008) IEEE Trans. Med. Imag , vol.27 , Issue.10 , pp. 1472-1483
    • Liao, W.1    Chen, H.2    Yang, Q.3    Lei, X.4
  • 23
    • 0036253329 scopus 로고    scopus 로고
    • Node merging in Kohonen's self-organizing mapping of fMRI data
    • DOI 10.1016/S0933-3657(02)00006-4, PII S0933365702000064
    • S.-C. Ngan, E. S. Yacoub,W. F. Auffermann, and X. Hu, "Node merging in Kohonen's self-organizing mapping of fMRI data," Artif. Intell. Med., vol. 25, no. 1, pp. 19-33, May 2002. (Pubitemid 34497108)
    • (2002) Artificial Intelligence in Medicine , vol.25 , Issue.1 , pp. 19-33
    • Ngan, S.-C.1    Yacoub, E.S.2    Auffermann, W.F.3    Hu, X.4
  • 24
    • 0025489075 scopus 로고
    • The self-organizing map
    • Sep
    • T. Kohonen, "The self-organizing map," Proc. IEEE, vol. 78, no. 9, pp. 1464-1480, Sep. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 25
    • 0030270228 scopus 로고    scopus 로고
    • Engineering applications of the selforganizing map
    • Oct
    • T. Kohonen and O. Simula, "Engineering applications of the selforganizing map," Proc. IEEE, vol. 84, no. 10, pp. 1358-1384, Oct. 1996.
    • (1996) Proc. IEEE , vol.84 , Issue.10 , pp. 1358-1384
    • Kohonen, T.1    Simula, O.2
  • 26
    • 77649274978 scopus 로고    scopus 로고
    • Graph based representations of density distribution and distances for self-organizing maps
    • Mar.
    • K. Taşdemir, "Graph based representations of density distribution and distances for self-organizing maps," IEEE Trans. Neural Netw., vol. 21, no. 3, pp. 520-526, Mar. 2010.
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.3 , pp. 520-526
    • Taşdemir, K.1
  • 27
    • 0002535204 scopus 로고
    • Self-organizing neural networks for visualization and classification
    • O. B. Lausen and R. Klar, Eds. Berlin,Germany: Springer-Verlag
    • A. Ultsch, "Self-organizing neural networks for visualization and classification," in Information and Classification-Concepts Methods and Applications, O. B. Lausen and R. Klar, Eds. Berlin,Germany: Springer-Verlag, 1993, pp. 307-313.
    • (1993) Information and Classification-Concepts Methods and Applications , pp. 307-313
    • Ultsch, A.1
  • 28
    • 24944572401 scopus 로고    scopus 로고
    • Maps for the visualization of high-dimensional data spaces
    • A. Ultsch, "Maps for the visualization of high-dimensional data spaces," in Proc. 4th Workshop Self-Org. Maps, 2003, vol. 3, pp. 225-230.
    • (2003) Proc. 4th Workshop Self-Org. Maps , vol.3 , pp. 225-230
    • Ultsch, A.1
  • 29
    • 0029307137 scopus 로고
    • A nonlinear projection method based on Kohonen's topology preserving maps
    • May
    • M. Kraaijveld, J.Mao, and A. Jain, "A nonlinear projection method based on Kohonen's topology preserving maps," IEEE Trans. Neural Netw, vol. 6, no. 3, pp. 548-559, May 1995.
    • (1995) IEEE Trans. Neural Netw , vol.6 , Issue.3 , pp. 548-559
    • Kraaijveld, M.1    Mao, J.2    Jain, A.3
  • 30
    • 0036128861 scopus 로고    scopus 로고
    • ViSOM-A novel method for multivariate data projection and structure visualization
    • DOI 10.1109/72.977314, PII S1045922702003508
    • H. Yin, "ViSOM-a novel method for multivariate data projection and structure visualization," IEEE Trans. Neural Netw, vol. 13, no. 1, pp. 237-243, Jan. 2002. (Pubitemid 34236851)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 237-243
    • Yin, H.1
  • 31
    • 0035111897 scopus 로고    scopus 로고
    • A new model of self-organizing neural networks and its applications
    • Jan
    • M.-C. Su and H.-T. Chang, "A new model of self-organizing neural networks and its applications," IEEE Trans. Neural Netw., vol. 12, no. 1, pp. 153-158, Jan. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.1 , pp. 153-158
    • Su, M.-C.1    Chang, H.-T.2
  • 32
    • 67349242966 scopus 로고    scopus 로고
    • Exploiting data topology in visualization and clustering of self-organizing maps
    • Apr
    • K. Taşdemir and M. Erzśebet, "Exploiting data topology in visualization and clustering of self-organizing maps," IEEE Trans. Neural Netw., vol. 20, no. 4, pp. 549-562, Apr. 2009.
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.4 , pp. 549-562
    • Taşdemir, K.1    Erzśebet, M.2
  • 33
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • DOI 10.1016/S1088-467X(99)00013-X
    • J. Vesanto, "SOM-based data visualization methods," Intell. Data Anal., vol. 3, no. 2, pp. 111-126, Aug. 1999. (Pubitemid 33260739)
    • (1999) Intelligent data analysis , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1
  • 34
    • 80055061070 scopus 로고    scopus 로고
    • Analyzing fMRI data with graph-based visualizations of self-organizing maps
    • Mar./Apr
    • S. B. Katwal, J. C. Gore, and B. P. Rogers, "Analyzing fMRI data with graph-based visualizations of self-organizing maps," in Proc. IEEE Int. Symp. Biomed. Imag., Mar./Apr. 2011, pp. 1577-1580.
    • (2011) Proc. IEEE Int. Symp. Biomed. Imag. , pp. 1577-1580
    • Katwal, S.B.1    Gore, J.C.2    Rogers, B.P.3
  • 35
    • 84870209859 scopus 로고    scopus 로고
    • Measuring relative timings of brain activities using fMRI
    • Feb.
    • S. B. Katwal, J. C. Gore, J. C. Gatenby, and B. P. Rogers, "Measuring relative timings of brain activities using fMRI," Neuroimage, vol. 66, no. 1, pp. 436-448, Feb. 2013.
    • (2013) Neuroimage , vol.66 , Issue.1 , pp. 436-448
    • Katwal, S.B.1    Gore, J.C.2    Gatenby, J.C.3    Rogers, B.P.4
  • 37
    • 65549098868 scopus 로고    scopus 로고
    • Modeling the hemodynamic response function in fMRI: Efficiency, bias and mismodeling
    • Mar
    • M. A. Lindquist, J. M. Loh, L. Y. Atlas, and T. D. Wager, "Modeling the hemodynamic response function in fMRI: Efficiency, bias and mismodeling," Neuroimage, vol. 45, no. 1, pp. S187-S198, Mar. 2009.
    • (2009) Neuroimage , vol.45 , Issue.1
    • Lindquist, M.A.1    Loh, J.M.2    Atlas, L.Y.3    Wager, T.D.4
  • 38
    • 4644351142 scopus 로고    scopus 로고
    • Comparison of two exploratory data analysis methods for fMRI: Unsupervised clustering versus independent component analysis
    • Sep
    • A. Meyer-B̈ase, O. Lange, and A. Wism̈uller, "Comparison of two exploratory data analysis methods for fMRI: Unsupervised clustering versus independent component analysis," IEEE Trans. Inf. Technol. Biomed., vol. 8, no. 3, pp. 387-398, Sep. 2004.
    • (2004) IEEE Trans. Inf. Technol. Biomed , vol.8 , Issue.3 , pp. 387-398
    • Meyer-B̈ase, A.1    Lange, O.2    Wism̈uller, A.3
  • 39
    • 0033916534 scopus 로고    scopus 로고
    • Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing
    • DOI 10.1006/nimg.2000.0568
    • F. M. Miezin, L. Maccotta, J. M. Ollinger, S. E. Petersen, and R. L. Buckner, "Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing," Neuroimage, vol. 11, no. 6, pp. 735-759, Jun. 2000. (Pubitemid 30437663)
    • (2000) NeuroImage , vol.11 , Issue.6 , pp. 735-759
    • Miezin, F.M.1    Maccotta, L.2    Ollinger, J.M.3    Petersen, S.E.4    Buckner, R.L.5
  • 40
    • 0032213559 scopus 로고    scopus 로고
    • The variability of human, BOLD hemodynamic responses
    • DOI 10.1006/nimg.1998.0369
    • G. K. Aguirre, E. Zarahn, and M. D'esposito, "The variability of human, BOLD hemodynamic responses," Neuroimage, vol. 8, no. 4, pp. 360-369, Nov. 1998. (Pubitemid 28545935)
    • (1998) NeuroImage , vol.8 , Issue.4 , pp. 360-369
    • Aguirre, G.K.1    Zarahn, E.2    D'Esposito, M.3
  • 41
    • 1842505168 scopus 로고    scopus 로고
    • Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
    • DOI 10.1016/j.neuroimage.2003.11.029, PII S1053811903007584
    • D. A. Handwerker, J. M. Ollinger, and M. D'Esposito, "Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses," Neuroimage, vol. 21, no. 4, pp. 1639-1651, Apr. 2004. (Pubitemid 38446587)
    • (2004) NeuroImage , vol.21 , Issue.4 , pp. 1639-1651
    • Handwerker, D.A.1    Ollinger, J.M.2    D'Esposito, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.