메뉴 건너뛰기




Volumn 31, Issue 10, 2013, Pages 1585-1596

The role of oxygen as a regulator of stem cell fate during fracture repair in TSP2-null mice

Author keywords

finite element model; mesenchymal stem cell; oxygen; Thrombospondin 2; tissue differentiation

Indexed keywords

OXYGEN; PIMONIDAZOLE; THROMBOSPONDIN 2;

EID: 84882903351     PISSN: 07360266     EISSN: 1554527X     Source Type: Journal    
DOI: 10.1002/jor.22396     Document Type: Article
Times cited : (34)

References (47)
  • 1
    • 0031157459 scopus 로고    scopus 로고
    • ESB Research award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces
    • Prendergast PJ, Huiskes R, Soballe K., 1997. ESB Research award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30: 539-548.
    • (1997) J Biomech , vol.30 , pp. 539-548
    • Prendergast, P.J.1    Huiskes, R.2    Soballe, K.3
  • 2
    • 0024076225 scopus 로고
    • Correlations between mechanical stress history and tissue differentiation in initial fracture healing
    • Carter DR, Blenman PR, Beaupre GS., 1988. Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res 6: 736-748.
    • (1988) J Orthop Res , vol.6 , pp. 736-748
    • Carter, D.R.1    Blenman, P.R.2    Beaupre, G.S.3
  • 3
    • 0033104459 scopus 로고    scopus 로고
    • Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing
    • Claes LE, Heigele CA., 1999. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32: 255-266.
    • (1999) J Biomech , vol.32 , pp. 255-266
    • Claes, L.E.1    Heigele, C.A.2
  • 5
    • 0036342923 scopus 로고    scopus 로고
    • A mechano-regulation model for tissue differentiation during fracture healing - Analysis of gap size and loading
    • Lacroix D, Prendergast PJ., 2002. A mechano-regulation model for tissue differentiation during fracture healing-analysis of gap size and loading. J Biomech 35: 1163-1171.
    • (2002) J Biomech , vol.35 , pp. 1163-1171
    • Lacroix, D.1    Prendergast, P.J.2
  • 6
    • 33744462845 scopus 로고    scopus 로고
    • Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing - Comparison with in vivo results
    • Isaksson H, van Donkelaar CC, Huiskes R, et al. 2006. Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing-comparison with in vivo results. J Orthop Res 24: 898-907.
    • (2006) J Orthop Res , vol.24 , pp. 898-907
    • Isaksson, H.1    Van Donkelaar, C.C.2    Huiskes, R.3
  • 7
    • 77955109456 scopus 로고    scopus 로고
    • Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair
    • Nagel T, Kelly DJ., 2010. Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair. Biomech Model Mechanobiol 9: 359-372.
    • (2010) Biomech Model Mechanobiol , vol.9 , pp. 359-372
    • Nagel, T.1    Kelly, D.J.2
  • 8
    • 19744379584 scopus 로고    scopus 로고
    • Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects
    • Kelly DJ, Prendergast PJ., 2005. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J Biomech 38: 1413-1422.
    • (2005) J Biomech , vol.38 , pp. 1413-1422
    • Kelly, D.J.1    Prendergast, P.J.2
  • 9
    • 72049130612 scopus 로고    scopus 로고
    • Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach
    • Khayyeri H, Checa S, Tagil M, et al. 2009. Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach. J Orthop Res 27: 1659-1666.
    • (2009) J Orthop Res , vol.27 , pp. 1659-1666
    • Khayyeri, H.1    Checa, S.2    Tagil, M.3
  • 10
    • 79953025653 scopus 로고    scopus 로고
    • The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta
    • Park JS, Chu JS, Tsou AD, et al. 2011. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials 32: 3921-3930.
    • (2011) Biomaterials , vol.32 , pp. 3921-3930
    • Park, J.S.1    Chu, J.S.2    Tsou, A.D.3
  • 11
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • Engler AJ, Sen S, Sweeney HL, et al. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126: 677-689.
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3
  • 12
    • 77956430523 scopus 로고    scopus 로고
    • Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression
    • Meyer EG, Buckley CT, Thorpe SD, et al. 2010. Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression. J Biomech 43: 2516-2523.
    • (2010) J Biomech , vol.43 , pp. 2516-2523
    • Meyer, E.G.1    Buckley, C.T.2    Thorpe, S.D.3
  • 13
    • 33750050271 scopus 로고    scopus 로고
    • Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification
    • Hirao M, Tamai N, Tsumaki N, et al. 2006. Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J Biol Chem 281: 31079-31092.
    • (2006) J Biol Chem , vol.281 , pp. 31079-31092
    • Hirao, M.1    Tamai, N.2    Tsumaki, N.3
  • 14
    • 84864269916 scopus 로고    scopus 로고
    • Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration - A mechanobiological model
    • Burke DP, Kelly DJ., 2012. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration-a mechanobiological model. PLoS ONE 7: e40737.
    • (2012) PLoS ONE , vol.7
    • Burke, D.P.1    Kelly, D.J.2
  • 15
    • 66349123284 scopus 로고    scopus 로고
    • Thrombospondin-2 influences the proportion of cartilage and bone during fracture healing
    • Taylor DK, Meganck JA, Terkhorn S, et al. 2009. Thrombospondin-2 influences the proportion of cartilage and bone during fracture healing. J Bone Miner Res 24: 1043-1054.
    • (2009) J Bone Miner Res , vol.24 , pp. 1043-1054
    • Taylor, D.K.1    Meganck, J.A.2    Terkhorn, S.3
  • 16
    • 39449127385 scopus 로고    scopus 로고
    • Thrombospondins use the VLDL receptor and a nonapoptotic pathway to inhibit cell division in microvascular endothelial cells
    • Oganesian A, Armstrong LC, Migliorini MM, et al. 2008. Thrombospondins use the VLDL receptor and a nonapoptotic pathway to inhibit cell division in microvascular endothelial cells. Mol Biol Cell 19: 563-571.
    • (2008) Mol Biol Cell , vol.19 , pp. 563-571
    • Oganesian, A.1    Armstrong, L.C.2    Migliorini, M.M.3
  • 17
    • 0035985164 scopus 로고    scopus 로고
    • Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism
    • Armstrong LC, Bjorkblom B, Hankenson KD, et al. 2002. Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell 13: 1893-1905.
    • (2002) Mol Biol Cell , vol.13 , pp. 1893-1905
    • Armstrong, L.C.1    Bjorkblom, B.2    Hankenson, K.D.3
  • 18
    • 0043092648 scopus 로고    scopus 로고
    • Thrombospondin 2 regulates cell proliferation induced by Rac1 redox-dependent signaling
    • Lopes N, Gregg D, Vasudevan S, et al. 2003. Thrombospondin 2 regulates cell proliferation induced by Rac1 redox-dependent signaling. Mol Cell Biol 23: 5401-5408.
    • (2003) Mol Cell Biol , vol.23 , pp. 5401-5408
    • Lopes, N.1    Gregg, D.2    Vasudevan, S.3
  • 19
    • 77958152769 scopus 로고    scopus 로고
    • Characterizing gait induced normal strains in a murine tibia cortical bone defect model
    • Prasad J, Wiater BP, Nork SE, et al. 2010. Characterizing gait induced normal strains in a murine tibia cortical bone defect model. J Biomech 43: 2765-2770.
    • (2010) J Biomech , vol.43 , pp. 2765-2770
    • Prasad, J.1    Wiater, B.P.2    Nork, S.E.3
  • 20
    • 77349087595 scopus 로고    scopus 로고
    • Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells
    • Holzwarth C, Vaegler M, Gieseke F, et al. 2010. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11: 11.
    • (2010) BMC Cell Biol , vol.11 , pp. 11
    • Holzwarth, C.1    Vaegler, M.2    Gieseke, F.3
  • 21
    • 36249020427 scopus 로고    scopus 로고
    • Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan
    • Fehrer C, Brunauer R, Laschober G, et al. 2007. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6: 745-757.
    • (2007) Aging Cell , vol.6 , pp. 745-757
    • Fehrer, C.1    Brunauer, R.2    Laschober, G.3
  • 22
    • 0036198010 scopus 로고    scopus 로고
    • Inhibition of PPAR[gamma]2 Gene Expression by the HIF-1-Regulated Gene DEC1/Stra13 - A mechanism for regulation of Adipogenesis by Hypoxia
    • Yun Z, Maecker HL, Johnson RS, et al. 2002. Inhibition of PPAR[gamma]2 Gene Expression by the HIF-1-Regulated Gene DEC1/Stra13-a mechanism for regulation of Adipogenesis by Hypoxia. Dev Cell 2: 331-341.
    • (2002) Dev Cell , vol.2 , pp. 331-341
    • Yun, Z.1    Maecker, H.L.2    Johnson, R.S.3
  • 23
    • 48749086529 scopus 로고    scopus 로고
    • Hypoxia promotes chondrogenesis in rat mesenchymal stem cells - A role for AKT and hypoxia-inducible factor (HIF)-1alpha
    • Kanichai M, Ferguson D, Prendergast PJ, et al. 2008. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells-a role for AKT and hypoxia-inducible factor (HIF)-1alpha. J Cell Physiol 216: 708-715.
    • (2008) J Cell Physiol , vol.216 , pp. 708-715
    • Kanichai, M.1    Ferguson, D.2    Prendergast, P.J.3
  • 24
    • 77956882362 scopus 로고    scopus 로고
    • Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes
    • Buckley CT, Vinardell T, Kelly DJ., 2010. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes. Osteoarthritis Cartilage 18: 1345-1354.
    • (2010) Osteoarthritis Cartilage , vol.18 , pp. 1345-1354
    • Buckley, C.T.1    Vinardell, T.2    Kelly, D.J.3
  • 25
    • 0025032102 scopus 로고
    • The vascular repair of an experimental osteotomy held in an external fixator
    • Brueton RN, Brookes M, Heatley FW., 1990. The vascular repair of an experimental osteotomy held in an external fixator. Clin Orthop Relat Res 286-304.
    • (1990) Clin Orthop Relat Res , pp. 286-304
    • Brueton, R.N.1    Brookes, M.2    Heatley, F.W.3
  • 26
    • 0037376627 scopus 로고    scopus 로고
    • Fracture healing as a post-natal developmental process - Molecular, spatial, and temporal aspects of its regulation
    • Gerstenfeld LC, Cullinane DM, Barnes GL, et al. 2003. Fracture healing as a post-natal developmental process-molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88: 873-884.
    • (2003) J Cell Biochem , vol.88 , pp. 873-884
    • Gerstenfeld, L.C.1    Cullinane, D.M.2    Barnes, G.L.3
  • 27
    • 57349105663 scopus 로고    scopus 로고
    • A mechanobiological model for tissue differentiation that includes angiogenesis - A lattice-based modeling approach
    • Checa S, Prendergast PJ., 2009. A mechanobiological model for tissue differentiation that includes angiogenesis-a lattice-based modeling approach. Ann Biomed Eng 37: 129-145.
    • (2009) Ann Biomed Eng , vol.37 , pp. 129-145
    • Checa, S.1    Prendergast, P.J.2
  • 28
    • 50949109494 scopus 로고    scopus 로고
    • Pressure, oxygen tension and temperature in the periosteal callus during bone healing - An in vivo study in sheep
    • Epari DR, Lienau J, Schell H, et al. 2008. Pressure, oxygen tension and temperature in the periosteal callus during bone healing-an in vivo study in sheep. Bone 43: 734-739.
    • (2008) Bone , vol.43 , pp. 734-739
    • Epari, D.R.1    Lienau, J.2    Schell, H.3
  • 29
    • 77954760366 scopus 로고    scopus 로고
    • Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair
    • Yu YY, Lieu S, Lu C, et al. 2010. Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair. Bone 47: 65-73.
    • (2010) Bone , vol.47 , pp. 65-73
    • Yu, Y.Y.1    Lieu, S.2    Lu, C.3
  • 30
    • 0041827114 scopus 로고    scopus 로고
    • Altered fracture repair in the absence of MMP9
    • Colnot C, Thompson Z, Miclau T, et al. 2003. Altered fracture repair in the absence of MMP9. Development 130: 4123-4133.
    • (2003) Development , vol.130 , pp. 4123-4133
    • Colnot, C.1    Thompson, Z.2    Miclau, T.3
  • 31
    • 33846804313 scopus 로고    scopus 로고
    • Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice
    • Kosaki N, Takaishi H, Kamekura S, et al. 2007. Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice. Biochem Biophys Res Commun 354: 846-851.
    • (2007) Biochem Biophys Res Commun , vol.354 , pp. 846-851
    • Kosaki, N.1    Takaishi, H.2    Kamekura, S.3
  • 32
    • 84855808363 scopus 로고    scopus 로고
    • Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells
    • Sheehy EJ, Buckley CT, Kelly DJ., 2012. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells. Biochem Biophys Res Commun 417: 305-310.
    • (2012) Biochem Biophys Res Commun , vol.417 , pp. 305-310
    • Sheehy, E.J.1    Buckley, C.T.2    Kelly, D.J.3
  • 33
    • 84867897196 scopus 로고    scopus 로고
    • The role of oxygen during fracture healing
    • Lu C, Saless N, Wang X, et al. 2013. The role of oxygen during fracture healing. Bone 52: 220-229.
    • (2013) Bone , vol.52 , pp. 220-229
    • Lu, C.1    Saless, N.2    Wang, X.3
  • 34
    • 58649117944 scopus 로고    scopus 로고
    • Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration
    • Colnot C., 2009. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 24: 274-282.
    • (2009) J Bone Miner Res , vol.24 , pp. 274-282
    • Colnot, C.1
  • 35
    • 84861830833 scopus 로고    scopus 로고
    • Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis
    • Matsubara H, Hogan DE, Morgan EF, et al. 2012. Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis. Bone 51: 168-180.
    • (2012) Bone , vol.51 , pp. 168-180
    • Matsubara, H.1    Hogan, D.E.2    Morgan, E.F.3
  • 36
    • 84859921118 scopus 로고    scopus 로고
    • The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules
    • Vetter A, Witt F, Sander O, et al. 2012. The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech Model Mechanobiol 11: 147-160.
    • (2012) Biomech Model Mechanobiol , vol.11 , pp. 147-160
    • Vetter, A.1    Witt, F.2    Sander, O.3
  • 37
    • 39149101807 scopus 로고    scopus 로고
    • Angiogenesis in bone fracture healing - A bioregulatory model
    • Geris L, Gerisch A, Sloten JV, et al. 2008. Angiogenesis in bone fracture healing-a bioregulatory model. J Theor Biol 251: 137-158.
    • (2008) J Theor Biol , vol.251 , pp. 137-158
    • Geris, L.1    Gerisch, A.2    Sloten, J.V.3
  • 38
    • 79957887227 scopus 로고    scopus 로고
    • A hybrid bioregulatory model of angiogenesis during bone fracture healing
    • Peiffer V, Gerisch A, Vandepitte D, et al. 2011. A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech Model Mechanobiol 10: 383-395.
    • (2011) Biomech Model Mechanobiol , vol.10 , pp. 383-395
    • Peiffer, V.1    Gerisch, A.2    Vandepitte, D.3
  • 39
    • 80051479562 scopus 로고    scopus 로고
    • Simulation of fracture healing in the tibia - Mechanoregulation of cell activity using a lattice modeling approach
    • Byrne DP, Lacroix D, Prendergast PJ., 2011. Simulation of fracture healing in the tibia-mechanoregulation of cell activity using a lattice modeling approach. J Orthop Res 29: 1496-1503.
    • (2011) J Orthop Res , vol.29 , pp. 1496-1503
    • Byrne, D.P.1    Lacroix, D.2    Prendergast, P.J.3
  • 40
    • 0020215760 scopus 로고
    • Mechanical properties of the fibrous tissue found at the bone-cement interface following total joint replacement
    • Hori RY, Lewis JL., 1982. Mechanical properties of the fibrous tissue found at the bone-cement interface following total joint replacement. J Biomed Mater Res 16: 911-927.
    • (1982) J Biomed Mater Res , vol.16 , pp. 911-927
    • Hori, R.Y.1    Lewis, J.L.2
  • 41
    • 0018983548 scopus 로고
    • Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments
    • Mow VC, Kuei SC, Lai WM, et al. 1980. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102: 73-84.
    • (1980) J Biomech Eng , vol.102 , pp. 73-84
    • Mow, V.C.1    Kuei, S.C.2    Lai, W.M.3
  • 43
    • 0032983135 scopus 로고    scopus 로고
    • Bone poroelasticity
    • Cowin SC., 1999. Bone poroelasticity. J Biomech 32: 217-238.
    • (1999) J Biomech , vol.32 , pp. 217-238
    • Cowin, S.C.1
  • 44
    • 0023901292 scopus 로고
    • Stiffness of compact bone - Effects of porosity and density
    • Schaffler MB, Burr DB., 1988. Stiffness of compact bone-effects of porosity and density. J Biomech 21: 13-16.
    • (1988) J Biomech , vol.21 , pp. 13-16
    • Schaffler, M.B.1    Burr, D.B.2
  • 45
    • 1642283524 scopus 로고
    • Diffusion coefficients for oxygen transport in whole blood
    • Hershey D, Karhan T., 1968. Diffusion coefficients for oxygen transport in whole blood. AIChE J 14: 969-972.
    • (1968) AIChE J , vol.14 , pp. 969-972
    • Hershey, D.1    Karhan, T.2
  • 46
    • 0035929385 scopus 로고    scopus 로고
    • A mathematical framework to study the effects of growth factor influences on fracture healing
    • Bailon-Plaza A, van der Meulen MC., 2001. A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212: 191-209.
    • (2001) J Theor Biol , vol.212 , pp. 191-209
    • Bailon-Plaza, A.1    Van Der Meulen, M.C.2
  • 47
    • 33646417935 scopus 로고    scopus 로고
    • Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing
    • Isaksson H, Wilson W, van Donkelaar CC., et al. 2006. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech 39: 1507-1516.
    • (2006) J Biomech , vol.39 , pp. 1507-1516
    • Isaksson, H.1    Wilson, W.2    Van Donkelaar, C.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.