메뉴 건너뛰기




Volumn , Issue , 2013, Pages 4319-4323

Fault reconstruction algorithm based on fault-relevant KPCA

Author keywords

fault relevant directions; fault relevant KPCA; Kernel principal component analysis (KPCA); subspace

Indexed keywords

FAULT RECONSTRUCTION; FAULT-RELEVANT DIRECTIONS; FAULT-RELEVANT KPCA; KERNEL PRINCIPAL COMPONENT ANALYSES (KPCA); PENICILLIN FERMENTATION PROCESS; PRINCIPAL DIRECTIONS; RECONSTRUCTION ALGORITHMS; SUBSPACE;

EID: 84882796087     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CCDC.2013.6561711     Document Type: Conference Paper
Times cited : (2)

References (12)
  • 1
    • 0001282938 scopus 로고    scopus 로고
    • On unifying multi-block analysis with applications to decentralized process monitoring
    • S. J. Qin, S. Valle-Cervantes, and M. Piovoso. On unifying multi-block analysis with applications to decentralized process monitoring. Journal of Chemometrics. 2001;15:715-742.
    • (2001) Journal of Chemometrics , vol.15 , pp. 715-742
    • Qin, S.J.1    Valle-Cervantes, S.2    Piovoso, M.3
  • 2
    • 67349245154 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring
    • C. Alcala, and S. J. Qin. Reconstruction-based contribution for process monitoring. Automatica. 2009;45(7):1593-1600.
    • (2009) Automatica , vol.45 , Issue.7 , pp. 1593-1600
    • Alcala, C.1    Qin, S.J.2
  • 3
    • 80051912783 scopus 로고    scopus 로고
    • Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the tennessee eastman process
    • L. Gang, C. F. Alcala, S. J. Qin. and Z. Donghua. Generalized Reconstruction-Based Contributions for Output-Relevant Fault Diagnosis With Application to the Tennessee Eastman Process. Control Systems Technology. IEEE Transactions on. 2011;19:1114-1127.
    • (2011) Control Systems Technology. IEEE Transactions On , vol.19 , pp. 1114-1127
    • Gang, L.1    Alcala, C.F.2    Qin, S.J.3    Donghua, Z.4
  • 4
    • 0032144398 scopus 로고    scopus 로고
    • Subspace approach to multidimensional fault identification and reconstruction
    • R Dunia, and S. J. Qin. Subspace approach to multidimensional fault identification and reconstruction. AIChE J. 1998;44:1813-1831.
    • (1998) AIChE J , vol.44 , pp. 1813-1831
    • Dunia, R.1    Qin, S.J.2
  • 5
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • H. Yue, and S. Qin. Reconstruction-Based Fault Identification Using a Combined Index Ind. Eng. Chem. Res. 2001;40:4403-4414.
    • (2001) Ind. Eng. Chem. Res , vol.40 , pp. 4403-4414
    • Yue, H.1    Qin, S.2
  • 6
    • 75249084652 scopus 로고    scopus 로고
    • Adaptive kernel principal component analysis
    • Mingtao Ding, Zheng Tian, Haixia Xu. Adaptive kernel principal component analysis. Signal Processing. h2010;90:1542-1553.
    • (2010) Signal Processing , vol.90 , pp. 1542-1553
    • Ding, M.1    Tian, Z.2    Xu, H.3
  • 7
    • 84863151045 scopus 로고    scopus 로고
    • Dynamic processes monitoring using recursive kernel principal component analysis
    • Yingwei Zhang, Shuai Li, Yongdong Teng. Dynamic processes monitoring using recursive kernel principal component analysis. Chemical Engineering Science. 2012;72:78-86.
    • (2012) Chemical Engineering Science , vol.72 , pp. 78-86
    • Zhang, Y.1    Li, S.2    Teng, Y.3
  • 8
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Zhiqiang Ge, Chunjie Yang, Zhihuan Song. Improved kernel PCA-based monitoring approach for nonlinear processes. Chemical Engineering Science. 2009;64:2245-2255.
    • (2009) Chemical Engineering Science , vol.64 , pp. 2245-2255
    • Ge, Z.1    Yang, C.2    Song, Z.3
  • 9
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • SangWook Choi, In-Beum Lee. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science. 2004;59:5897-5908.
    • (2004) Chemical Engineering Science , vol.59 , pp. 5897-5908
    • Choi, S.1    Lee, I.-B.2
  • 10
    • 77951090351 scopus 로고    scopus 로고
    • On-line batch process monitoring using batch dynamic kernel principal component analysis
    • Mingxing Jia, Fei Chu, Fuli Wang, Wei Wang. On-line batch process monitoring using batch dynamic kernel principal component analysis. Chemometrics and Intelligent Laboratory Systems. 2010;101:110-122.
    • (2010) Chemometrics and Intelligent Laboratory Systems , vol.101 , pp. 110-122
    • Jia, M.1    Chu, F.2    Wang, F.3    Wang, W.4
  • 11
    • 77956075435 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring with kernel principal component analysis
    • C. F. Alcala, and S. J. Qin. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Ind. Eng. Chem Res. 2010;49:7849-7857.
    • (2010) Ind. Eng. Chem Res , vol.49 , pp. 7849-7857
    • Alcala, C.F.1    Qin, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.