-
1
-
-
0001282938
-
On unifying multi-block analysis with applications to decentralized process monitoring
-
S. J. Qin, S. Valle-Cervantes, and M. Piovoso. On unifying multi-block analysis with applications to decentralized process monitoring. Journal of Chemometrics. 2001;15:715-742.
-
(2001)
Journal of Chemometrics
, vol.15
, pp. 715-742
-
-
Qin, S.J.1
Valle-Cervantes, S.2
Piovoso, M.3
-
2
-
-
67349245154
-
Reconstruction-based contribution for process monitoring
-
C. Alcala, and S. J. Qin. Reconstruction-based contribution for process monitoring. Automatica. 2009;45(7):1593-1600.
-
(2009)
Automatica
, vol.45
, Issue.7
, pp. 1593-1600
-
-
Alcala, C.1
Qin, S.J.2
-
3
-
-
80051912783
-
Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the tennessee eastman process
-
L. Gang, C. F. Alcala, S. J. Qin. and Z. Donghua. Generalized Reconstruction-Based Contributions for Output-Relevant Fault Diagnosis With Application to the Tennessee Eastman Process. Control Systems Technology. IEEE Transactions on. 2011;19:1114-1127.
-
(2011)
Control Systems Technology. IEEE Transactions On
, vol.19
, pp. 1114-1127
-
-
Gang, L.1
Alcala, C.F.2
Qin, S.J.3
Donghua, Z.4
-
4
-
-
0032144398
-
Subspace approach to multidimensional fault identification and reconstruction
-
R Dunia, and S. J. Qin. Subspace approach to multidimensional fault identification and reconstruction. AIChE J. 1998;44:1813-1831.
-
(1998)
AIChE J
, vol.44
, pp. 1813-1831
-
-
Dunia, R.1
Qin, S.J.2
-
5
-
-
0035802262
-
Reconstruction-based fault identification using a combined index
-
H. Yue, and S. Qin. Reconstruction-Based Fault Identification Using a Combined Index Ind. Eng. Chem. Res. 2001;40:4403-4414.
-
(2001)
Ind. Eng. Chem. Res
, vol.40
, pp. 4403-4414
-
-
Yue, H.1
Qin, S.2
-
6
-
-
75249084652
-
Adaptive kernel principal component analysis
-
Mingtao Ding, Zheng Tian, Haixia Xu. Adaptive kernel principal component analysis. Signal Processing. h2010;90:1542-1553.
-
(2010)
Signal Processing
, vol.90
, pp. 1542-1553
-
-
Ding, M.1
Tian, Z.2
Xu, H.3
-
7
-
-
84863151045
-
Dynamic processes monitoring using recursive kernel principal component analysis
-
Yingwei Zhang, Shuai Li, Yongdong Teng. Dynamic processes monitoring using recursive kernel principal component analysis. Chemical Engineering Science. 2012;72:78-86.
-
(2012)
Chemical Engineering Science
, vol.72
, pp. 78-86
-
-
Zhang, Y.1
Li, S.2
Teng, Y.3
-
8
-
-
63249084878
-
Improved kernel PCA-based monitoring approach for nonlinear processes
-
Zhiqiang Ge, Chunjie Yang, Zhihuan Song. Improved kernel PCA-based monitoring approach for nonlinear processes. Chemical Engineering Science. 2009;64:2245-2255.
-
(2009)
Chemical Engineering Science
, vol.64
, pp. 2245-2255
-
-
Ge, Z.1
Yang, C.2
Song, Z.3
-
9
-
-
10044259622
-
Nonlinear dynamic process monitoring based on dynamic kernel PCA
-
SangWook Choi, In-Beum Lee. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science. 2004;59:5897-5908.
-
(2004)
Chemical Engineering Science
, vol.59
, pp. 5897-5908
-
-
Choi, S.1
Lee, I.-B.2
-
10
-
-
77951090351
-
On-line batch process monitoring using batch dynamic kernel principal component analysis
-
Mingxing Jia, Fei Chu, Fuli Wang, Wei Wang. On-line batch process monitoring using batch dynamic kernel principal component analysis. Chemometrics and Intelligent Laboratory Systems. 2010;101:110-122.
-
(2010)
Chemometrics and Intelligent Laboratory Systems
, vol.101
, pp. 110-122
-
-
Jia, M.1
Chu, F.2
Wang, F.3
Wang, W.4
-
11
-
-
77956075435
-
Reconstruction-based contribution for process monitoring with kernel principal component analysis
-
C. F. Alcala, and S. J. Qin. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Ind. Eng. Chem Res. 2010;49:7849-7857.
-
(2010)
Ind. Eng. Chem Res
, vol.49
, pp. 7849-7857
-
-
Alcala, C.F.1
Qin, S.J.2
-
12
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Jong-Min Lee, ChangKyoo Yoob, SangWook Choi, Peter A. Vanrolleghemb, In-Beum Lee. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science. 2004;59:223-234.
-
(2004)
Chemical Engineering Science
, vol.59
, pp. 223-234
-
-
Lee, J.-M.1
Yoob, C.K.2
Choi, S.W.3
Peter, A.4
Vanrolleghemb5
Lee, I.-B.6
|