-
1
-
-
0019152630
-
Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36(4):93-202.
-
(1980)
Biol. Cybern.
, vol.36
, Issue.4
, pp. 93-202
-
-
Fukushima, K.1
-
2
-
-
33847380121
-
Robust object recognition with cortex-like mechanisms
-
Serre T., Wolf L., Bileschi S., Riesenhuber M., Poggio T. Robust object recognition with cortex-like mechanisms. TPAMI 2007, 29(3):411-426.
-
(2007)
TPAMI
, vol.29
, Issue.3
, pp. 411-426
-
-
Serre, T.1
Wolf, L.2
Bileschi, S.3
Riesenhuber, M.4
Poggio, T.5
-
3
-
-
51149092609
-
Object class recognition and localization using sparse features with limited receptive fields
-
Mutch J., Lowe D.G. Object class recognition and localization using sparse features with limited receptive fields. IJCV 2008, 80(1):45-57.
-
(2008)
IJCV
, vol.80
, Issue.1
, pp. 45-57
-
-
Mutch, J.1
Lowe, D.G.2
-
4
-
-
73449129720
-
A high-throughput screening approach to discovering good forms of biologically inspired visual representation
-
Pinto N., Doukhan D., DiCarlo J.J., Cox D.D. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput. Biol. 2009, 5(11):e1000579. 10.1371/journal.pcbi.1000579.
-
(2009)
PLoS Comput. Biol.
, vol.5
, Issue.11
, pp. 579
-
-
Pinto, N.1
Doukhan, D.2
DiCarlo, J.J.3
Cox, D.D.4
-
6
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
Jarrett K., Kavukcuoglu K., Ranzato M., LeCun Y. What is the best multi-stage architecture for object recognition?. ICCV 2009.
-
(2009)
ICCV
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
7
-
-
38949193299
-
Why is real-world visual object recognition hard?
-
Pinto N., Cox D.D., DiCarlo J.J. Why is real-world visual object recognition hard?. PLoS Comput. Biol. 2008, 4(1):e27.
-
(2008)
PLoS Comput. Biol.
, vol.4
, Issue.1
, pp. 27
-
-
Pinto, N.1
Cox, D.D.2
DiCarlo, J.J.3
-
8
-
-
70450172604
-
How far can you get with a modern face recognition test set using only simple features?
-
Pinto N., DiCarlo J.J., Cox D.D. How far can you get with a modern face recognition test set using only simple features?. CVPR 2009.
-
(2009)
CVPR
-
-
Pinto, N.1
DiCarlo, J.J.2
Cox, D.D.3
-
9
-
-
79958697382
-
Beyond simple features: a large-scale feature search approach to unconstrained face recognition
-
Pinto N., Cox D.D. Beyond simple features: a large-scale feature search approach to unconstrained face recognition. IEEE Autom. Face Gesture Recognit, 2011.
-
(2011)
IEEE Autom. Face Gesture Recognit,
-
-
Pinto, N.1
Cox, D.D.2
-
10
-
-
84882544207
-
Pycuda: Gpu run-time code generation for high-performance computing, Parallel Computing
-
abs/0911.3456
-
Klöckner A., Pinto N., Lee Y., Catanzaro B.C., Ivanov P., Fasih A. Pycuda: Gpu run-time code generation for high-performance computing, Parallel Computing. Elsevier, CoRR 2009, abs/0911.3456.
-
(2009)
Elsevier, CoRR
-
-
Klöckner, A.1
Pinto, N.2
Lee, Y.3
Catanzaro, B.C.4
Ivanov, P.5
Fasih, A.6
-
11
-
-
84882531011
-
-
PyCUDA. , (accessed 26.02.11).
-
PyCUDA. , 2011 (accessed 26.02.11). http://mathema.tician.de/software/pycuda.
-
(2011)
-
-
-
12
-
-
84882490871
-
-
Cheetah. , (accessed 26.02.11).
-
Cheetah. , 2011 (accessed 26.02.11). http://www.cheetahtemplate.org/.
-
(2011)
-
-
-
13
-
-
84882493188
-
-
Decuda. , (accessed 26.02.11).
-
Decuda. , 2011 (accessed 26.02.11). https://github.com/laanwj/decuda/wiki.
-
(2011)
-
-
-
14
-
-
84882535364
-
-
Example code repository.
-
Example code repository. http://www.github.com/gcg-metaprog-chapter/gcg.
-
-
-
|