메뉴 건너뛰기




Volumn 2, Issue , 2009, Pages 577-618

Common Clustering Algorithms

Author keywords

Agglomerative clustering; Clustering; Constrained clustering; Divisive clustering; Hierarchical clustering; Hybrid clustering; K Means clustering; K medoid clustering; Partitioning clustering; Unsupervised learning

Indexed keywords


EID: 84882534399     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-044452701-1.00064-8     Document Type: Chapter
Times cited : (58)

References (141)
  • 2
    • 0038119396 scopus 로고    scopus 로고
    • Techniques of Cluster Algorithms in Data Mining
    • Grabmeier J., Rudolph A. Techniques of Cluster Algorithms in Data Mining. Data Min. Knowledge Discov. 2002, 6:303-360.
    • (2002) Data Min. Knowledge Discov. , vol.6 , pp. 303-360
    • Grabmeier, J.1    Rudolph, A.2
  • 10
    • 0012834533 scopus 로고    scopus 로고
    • Why So Many Clustering Algorithms: A Position Paper
    • Estivill-Castro V. Why So Many Clustering Algorithms: A Position Paper. SIGKDD Explor. 2002, 4(1):65-75.
    • (2002) SIGKDD Explor. , vol.4 , Issue.1 , pp. 65-75
    • Estivill-Castro, V.1
  • 12
    • 22044455069 scopus 로고    scopus 로고
    • Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications
    • Sander J., Ester M., Kriegel H.P., Wimmer M., Xu X. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications. Data Min. Knowledge Discov. 1998, 2(2):169-194.
    • (1998) Data Min. Knowledge Discov. , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.P.3    Wimmer, M.4    Xu, X.5
  • 13
    • 33745308637 scopus 로고    scopus 로고
    • Generalized Density-Based Clustering for Spatial Data Mining
    • Ph.D. thesis, University of Munich, Germany
    • Sander, J. Generalized Density-Based Clustering for Spatial Data Mining. Ph.D. thesis, University of Munich, Germany, 1998.
    • (1998)
    • Sander, J.1
  • 14
    • 0034264731 scopus 로고    scopus 로고
    • An Approach to Active Spatial Data Mining Based on Statistical Information
    • Wang W., Yang J., Muntz R.R. An Approach to Active Spatial Data Mining Based on Statistical Information. IEEE Trans. Knowledge Data Eng. 2000, 12(5):715-728.
    • (2000) IEEE Trans. Knowledge Data Eng. , vol.12 , Issue.5 , pp. 715-728
    • Wang, W.1    Yang, J.2    Muntz, R.R.3
  • 15
    • 84950648422 scopus 로고
    • Cluster Analysis and Mathematical Programming
    • Rao M. Cluster Analysis and Mathematical Programming. J. Am. Stat. Assoc. 1971, 66:622-626.
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 622-626
    • Rao, M.1
  • 17
    • 0000217783 scopus 로고
    • Integer Programming and the Theory of Grouping
    • Vinod H. Integer Programming and the Theory of Grouping. J. Am. Stat. Assoc. 1969, 64:506-517.
    • (1969) J. Am. Stat. Assoc. , vol.64 , pp. 506-517
    • Vinod, H.1
  • 19
    • 0004140078 scopus 로고    scopus 로고
    • An Analysis of Recent Work on Clustering Algorithms
    • Technical Report UW-CSE01-03-02, Department of Computer Science & Software Engineering, University of Washington, [Available at].
    • Fasulo, D. An Analysis of Recent Work on Clustering Algorithms; Technical Report UW-CSE01-03-02, Department of Computer Science & Software Engineering, University of Washington, 1999 [Available at ]. http://www.cs.washington.edu.
    • (1999)
    • Fasulo, D.1
  • 20
    • 0001457509 scopus 로고
    • Some Methods for Classification and Analysis of Multivariate Observations
    • L. Le Cam, J. Neyman (Eds.)
    • MacQueen J. Some Methods for Classification and Analysis of Multivariate Observations. 5th Berkeley Symposium on Mathematical Statistics and Probability 1967, Vol. 1:281-297. L. Le Cam, J. Neyman (Eds.).
    • (1967) 5th Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 21
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values
    • Huang Z. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Min. Knowledge Discov. 1998, 2(3):2283-2304.
    • (1998) Data Min. Knowledge Discov. , vol.2 , Issue.3 , pp. 2283-2304
    • Huang, Z.1
  • 22
    • 84958035025 scopus 로고    scopus 로고
    • K-Means Clustering Algorithm for Categorical Attributes
    • Springer, Berlin, M. Mohania, A.M. Tjoa (Eds.) Data Warehousing and Knowledge Discovery DaWaK-99
    • Gupta S.K., Rao K.S., Bhatnagar V. K-Means Clustering Algorithm for Categorical Attributes. Lecture Notes Comput. Sci. 1999, Vol. 1676:203-208. Springer, Berlin. M. Mohania, A.M. Tjoa (Eds.).
    • (1999) Lecture Notes Comput. Sci. , vol.1676 , pp. 203-208
    • Gupta, S.K.1    Rao, K.S.2    Bhatnagar, V.3
  • 23
    • 0003564282 scopus 로고
    • Clarendon Press, Oxford, UK, (Graduate Texts in Computer Science)
    • Hitchinson A. Algorithmic Learning 1994, Clarendon Press, Oxford, UK, (Graduate Texts in Computer Science).
    • (1994) Algorithmic Learning
    • Hitchinson, A.1
  • 26
    • 0031725991 scopus 로고    scopus 로고
    • Cluster Discovery Techniques for Exploratory Spatial Data Analysis
    • Murray A.T., Estivill-Castro V. Cluster Discovery Techniques for Exploratory Spatial Data Analysis. Int. J. Geogr. Inf. Sci. 1998, 12(5):431-443.
    • (1998) Int. J. Geogr. Inf. Sci. , vol.12 , Issue.5 , pp. 431-443
    • Murray, A.T.1    Estivill-Castro, V.2
  • 29
    • 0040700109 scopus 로고
    • Prigram Library Unit, Edinburgh University, Edinburgh, UK
    • Wishart D. Supplement, CLUSTAN User Manual 1982, Prigram Library Unit, Edinburgh University, Edinburgh, UK. 3rd ed.
    • (1982) Supplement, CLUSTAN User Manual
    • Wishart, D.1
  • 33
    • 0032269108 scopus 로고    scopus 로고
    • How Many Clusters? Which Clustering Method? Answers via Model-Based Cluster Analysis
    • Fraley C., Raftery A.E. How Many Clusters? Which Clustering Method? Answers via Model-Based Cluster Analysis. Comp. J. 1998, 41(8):578-588.
    • (1998) Comp. J. , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 36
    • 0002629270 scopus 로고
    • Maximum Likelihood from Incomplete Data via the EM Algorithm
    • Dempster A.P., Laird N.M., Rubin D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. Ser. B 1977, 39:1-38.
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 37
    • 0027453616 scopus 로고
    • Model-Based Gaussian and Non-Gaussian Clustering
    • Banfield J.D., Raftery A.E. Model-Based Gaussian and Non-Gaussian Clustering. Biometrics 1993, 49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 38
    • 0029305528 scopus 로고
    • Gaussian Parsimonious Clustering Models
    • Celeux G., Govaret G. Gaussian Parsimonious Clustering Models. Pattern Recognit. 1995, 28(5):781-793.
    • (1995) Pattern Recognit. , vol.28 , Issue.5 , pp. 781-793
    • Celeux, G.1    Govaret, G.2
  • 40
    • 70350338835 scopus 로고
    • Gibbs Sampling
    • North-Holland, Amsterdam, The Netherlands, C.R. Rao (Ed.)
    • Arnold S.F. Gibbs Sampling. Handbook of Statistics 9 1993, 599-625. North-Holland, Amsterdam, The Netherlands. C.R. Rao (Ed.).
    • (1993) Handbook of Statistics 9 , pp. 599-625
    • Arnold, S.F.1
  • 42
    • 0003053548 scopus 로고
    • Bayesian Computation via the Gibbs Sampler and Related Markov Chain Monte Carlo Methods
    • Smith A.F.M., Roberts G.O. Bayesian Computation via the Gibbs Sampler and Related Markov Chain Monte Carlo Methods. J. R. Stat. Soc. Ser. B 1993, 55(1):2-23.
    • (1993) J. R. Stat. Soc. Ser. B , vol.55 , Issue.1 , pp. 2-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 43
    • 84958980429 scopus 로고    scopus 로고
    • Point Estimation Using the Kullback-Leibler Loss Function and MML
    • Springer, Berlin, X. Wu, R. Kotagiri, K.K. Korb (Eds.) Proceedings of Second Pacific-Asia Conference on Knowledge Discovery and Data Mining PAKDD-98
    • Dowe D., Baxter R.A., Oliver J.J., Wallace C. Point Estimation Using the Kullback-Leibler Loss Function and MML. Lecture Notes Artif. Intell. 1998, Vol. 1394:87-95. Springer, Berlin. X. Wu, R. Kotagiri, K.K. Korb (Eds.).
    • (1998) Lecture Notes Artif. Intell. , vol.1394 , pp. 87-95
    • Dowe, D.1    Baxter, R.A.2    Oliver, J.J.3    Wallace, C.4
  • 44
    • 0000208682 scopus 로고
    • Estimation and Inference by Compact Coding
    • Wallace C.S., Freeman P.R. Estimation and Inference by Compact Coding. J. R. Stat. Soc. Ser. B 1987, 49(3):240-265.
    • (1987) J. R. Stat. Soc. Ser. B , vol.49 , Issue.3 , pp. 240-265
    • Wallace, C.S.1    Freeman, P.R.2
  • 45
    • 0000107517 scopus 로고
    • An Information Measure for Classification
    • Wallace C.S., Boulton D.M. An Information Measure for Classification. Comp. J. 1968, 11:185-195.
    • (1968) Comp. J. , vol.11 , pp. 185-195
    • Wallace, C.S.1    Boulton, D.M.2
  • 46
    • 0000208683 scopus 로고
    • Stochastic Complexity
    • Rissanen J. Stochastic Complexity. J. R. Stat. Soc. Ser. B 1987, 49(3):223-239.
    • (1987) J. R. Stat. Soc. Ser. B , vol.49 , Issue.3 , pp. 223-239
    • Rissanen, J.1
  • 47
    • 0032684826 scopus 로고    scopus 로고
    • Minimum Message Length and Kolmogorov Complexity
    • Wallace C.S., Dowe D.L. Minimum Message Length and Kolmogorov Complexity. Comp. J. 1999, 42(4):270-283.
    • (1999) Comp. J. , vol.42 , Issue.4 , pp. 270-283
    • Wallace, C.S.1    Dowe, D.L.2
  • 48
    • 22844453859 scopus 로고    scopus 로고
    • A New Modelling Technique Based on Markov Chains to Mine Behavioral Patterns in Event Based Time Series
    • Springer, Berlin, M. Mohania, A.M. Tjoa (Eds.) Data Warehousing and Knowledge Discovery DaWaK-99
    • Massa S., Paolucci M., Puliafito P.P. A New Modelling Technique Based on Markov Chains to Mine Behavioral Patterns in Event Based Time Series. Lecture Notes Comput. Sci. 1999, Vol. 1676:331-342. Springer, Berlin. M. Mohania, A.M. Tjoa (Eds.).
    • (1999) Lecture Notes Comput. Sci. , vol.1676 , pp. 331-342
    • Massa, S.1    Paolucci, M.2    Puliafito, P.P.3
  • 50
    • 84945263084 scopus 로고    scopus 로고
    • K-Harmonic Means - A Spatial Clustering Algorithm with Boosting
    • Springer, Berlin, ISBN:3-540-41773-7, J. Roddick, K. Hornsby (Eds.) Proceedings of the International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining - TSDM2000, in Conjunction with the 4th European Conference on Principles and Practices of Knowledge Discovery and Databases
    • Zhang B., Hsu M., Dayal U. K-Harmonic Means - A Spatial Clustering Algorithm with Boosting. Lect. Notes Artif. Intell. 2007, Vol. 2007:31-45. Springer, Berlin, ISBN:3-540-41773-7. J. Roddick, K. Hornsby (Eds.).
    • (2007) Lect. Notes Artif. Intell. , vol.2007 , pp. 31-45
    • Zhang, B.1    Hsu, M.2    Dayal, U.3
  • 52
    • 0002818802 scopus 로고
    • On a Pair of Dual Non-Linear Problems
    • John Wiley & Sons, New York, J. Abadie, S. Vajda (Eds.)
    • Kuhn H.W. On a Pair of Dual Non-Linear Problems. Nonlinear Programming 1967, 38-54. John Wiley & Sons, New York. J. Abadie, S. Vajda (Eds.).
    • (1967) Nonlinear Programming , pp. 38-54
    • Kuhn, H.W.1
  • 53
    • 3543120775 scopus 로고
    • Proving Geometric Algorithm Non-Solvability: An Application of Factoring Polynomials
    • Bajaj C. Proving Geometric Algorithm Non-Solvability: An Application of Factoring Polynomials. J. Symb. Comput. 1986, 2:99-102.
    • (1986) J. Symb. Comput. , vol.2 , pp. 99-102
    • Bajaj, C.1
  • 55
    • 84980123632 scopus 로고
    • An Efficient Algorithm for the Numerical Solution of the Generalized Weber Problem in Spatial Economics
    • Kuhn H.W., Kuenne R.E. An Efficient Algorithm for the Numerical Solution of the Generalized Weber Problem in Spatial Economics. J. Reg. Sci. 1962, 4(2):21-33.
    • (1962) J. Reg. Sci. , vol.4 , Issue.2 , pp. 21-33
    • Kuhn, H.W.1    Kuenne, R.E.2
  • 56
    • 34250438259 scopus 로고
    • A Note on Fremat's Problem
    • Kuhn H.W. A Note on Fremat's Problem. Math. Prog. 1973, 4:98-107.
    • (1973) Math. Prog. , vol.4 , pp. 98-107
    • Kuhn, H.W.1
  • 57
    • 0003150632 scopus 로고
    • A Quadratically Convergent Method for Minimizing a Sum of Euclidean Norms
    • Overton M.L. A Quadratically Convergent Method for Minimizing a Sum of Euclidean Norms. Math. Prog. 1983, 27:34-63.
    • (1983) Math. Prog. , vol.27 , pp. 34-63
    • Overton, M.L.1
  • 58
    • 0012941002 scopus 로고    scopus 로고
    • Robust Distance-Based Clustering with Applications to Spatial Data Mining
    • Estivill-Castro V., Houle M.E. Robust Distance-Based Clustering with Applications to Spatial Data Mining. Algorithmica 2001, 30(2):216-242.
    • (2001) Algorithmica , vol.30 , Issue.2 , pp. 216-242
    • Estivill-Castro, V.1    Houle, M.E.2
  • 59
    • 79957944034 scopus 로고    scopus 로고
    • Discovering Associations in Spatial Data - An Efficient Medoid Based Approach
    • Springer, Berlin, X. Wu, R. Kotagiri, K.K. Korb (Eds.) Proceedings of the 2nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-98)
    • Estivill-Castro V., Murray A.T. Discovering Associations in Spatial Data - An Efficient Medoid Based Approach. Lecture Notes Artif. Intell. 1998, Vol. 1394:110-121. Springer, Berlin. X. Wu, R. Kotagiri, K.K. Korb (Eds.).
    • (1998) Lecture Notes Artif. Intell. , vol.1394 , pp. 110-121
    • Estivill-Castro, V.1    Murray, A.T.2
  • 60
    • 0036709106 scopus 로고    scopus 로고
    • CLARANS: A Method for Clustering Objects for Spatial Data Mining
    • Ng R.T., Han J. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Trans. Knowledge Data Eng. 2002, 14(5):1003-1016.
    • (2002) IEEE Trans. Knowledge Data Eng. , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.T.1    Han, J.2
  • 61
    • 0029752880 scopus 로고    scopus 로고
    • A Self-Organizing Network for Hyperellipsoidal Clustering (HEC)
    • Mao J., Jain A.K. A Self-Organizing Network for Hyperellipsoidal Clustering (HEC). IEEE Trans. Neural Netw. 1996, 7(1):16-29.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , Issue.1 , pp. 16-29
    • Mao, J.1    Jain, A.K.2
  • 63
    • 0035279319 scopus 로고    scopus 로고
    • CURE: An Efficient Clustering Algorithm for Large Databases
    • Guha S., Rastogi R., Shim K. CURE: An Efficient Clustering Algorithm for Large Databases. Inf. Syst. 2001, 26(1):35-58.
    • (2001) Inf. Syst. , vol.26 , Issue.1 , pp. 35-58
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 64
    • 84882536462 scopus 로고    scopus 로고
    • Data Structures for Minimization of Total Within-Group Distance for Spatio-Temporal Clustering
    • Estivill-Castro V., Houle M.E. Data Structures for Minimization of Total Within-Group Distance for Spatio-Temporal Clustering. Lecture Notes Artif. Intell. 2001, 2168:91-102.
    • (2001) Lecture Notes Artif. Intell. , vol.2168 , pp. 91-102
    • Estivill-Castro, V.1    Houle, M.E.2
  • 65
    • 0002728201 scopus 로고
    • The Weber Problem: History and Perspectives
    • Wesolowsky G. The Weber Problem: History and Perspectives. Loc. Sci. 1993, 1:5-23.
    • (1993) Loc. Sci. , vol.1 , pp. 5-23
    • Wesolowsky, G.1
  • 68
    • 71949121170 scopus 로고    scopus 로고
    • Clustering Web Visitors by Fast, Robust and Convergent Algorithms
    • Estivill-Castro V., Yang J. Clustering Web Visitors by Fast, Robust and Convergent Algorithms. Int. J. Foundations Comp. Sci. 2002, 13(4):497-520.
    • (2002) Int. J. Foundations Comp. Sci. , vol.13 , Issue.4 , pp. 497-520
    • Estivill-Castro, V.1    Yang, J.2
  • 69
    • 0004156798 scopus 로고
    • John Wiley & Sons, New York
    • Apostol T.M. Calculus 1969, Vol. II. John Wiley & Sons, New York. 2nd ed.
    • (1969) Calculus , vol.II
    • Apostol, T.M.1
  • 70
    • 0021202650 scopus 로고
    • K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality
    • Selim S.Z., Ismail M.A. k-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 1984, 6(1):81-86.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) , vol.6 , Issue.1 , pp. 81-86
    • Selim, S.Z.1    Ismail, M.A.2
  • 73
    • 84882465332 scopus 로고    scopus 로고
    • Fast Vector Quantizer on Neural Clustering Networks Providing Globally Optimal Cluster Solutions
    • IEEE Computer Society, Vienna, Austria, August, pp 351-355
    • Moller U., Galicki M., Witte H. Fast Vector Quantizer on Neural Clustering Networks Providing Globally Optimal Cluster Solutions. Proceedings of the 13th International Conference on Pattern Recognition 1996, IEEE Computer Society, Vienna, Austria, August, pp 351-355.
    • (1996) Proceedings of the 13th International Conference on Pattern Recognition
    • Moller, U.1    Galicki, M.2    Witte, H.3
  • 74
    • 84882483880 scopus 로고    scopus 로고
    • Non-Metric Neural Clustering
    • IEEE Service Center, Piscataway, NJ, ISBN: 0-7803-5871-6, T. Gedeon, P. Wong, S. Halgamuge, N. Kasabov, D. Nauck, K. Fukushima (Eds.)
    • Sato-Ilic M. Non-Metric Neural Clustering. Proceedings of the 6th International Conference on Neural Information Processing (ICONIP'99) 1999, 72-77. IEEE Service Center, Piscataway, NJ, ISBN: 0-7803-5871-6. T. Gedeon, P. Wong, S. Halgamuge, N. Kasabov, D. Nauck, K. Fukushima (Eds.).
    • (1999) Proceedings of the 6th International Conference on Neural Information Processing (ICONIP'99) , pp. 72-77
    • Sato-Ilic, M.1
  • 76
    • 0001815795 scopus 로고
    • Neural Networks and Pattern Recognition
    • IEEE Press, New York, NY, ISBN: 0-7803-1104-3, J.M. Zurada, R.J. Marks, C.J. Robinson (Eds.)
    • Jain A.K., Mao J. Neural Networks and Pattern Recognition. Computational Intelligence: Imitating Life 1994, 194-212. IEEE Press, New York, NY, ISBN: 0-7803-1104-3. J.M. Zurada, R.J. Marks, C.J. Robinson (Eds.).
    • (1994) Computational Intelligence: Imitating Life , pp. 194-212
    • Jain, A.K.1    Mao, J.2
  • 78
    • 0027634778 scopus 로고
    • Generalized Clustering Networks and Kohonens Self-Organizing Scheme
    • Pal N.R., Bezdek J.C., Tsao E.C.-K. Generalized Clustering Networks and Kohonens Self-Organizing Scheme. IEEE Trans. Neural Netw. 1993, 4:549-557.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , pp. 549-557
    • Pal, N.R.1    Bezdek, J.C.2    Tsao, E.C.-K.3
  • 79
    • 0020068152 scopus 로고
    • Self-Organized Formation of Topologically Correct Feature Maps
    • Kohonen T. Self-Organized Formation of Topologically Correct Feature Maps. Biol. Cybern. 1982, 43:59-69.
    • (1982) Biol. Cybern. , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 81
    • 0025235219 scopus 로고
    • Art3: Hierarchical Search Using Chemical Transmitters in Self-Organizing Pattern Recognition Architectures
    • Carpenter G., Grossberg S. Art3: Hierarchical Search Using Chemical Transmitters in Self-Organizing Pattern Recognition Architectures. Neural Netw. 1990, 3:129-152.
    • (1990) Neural Netw. , vol.3 , pp. 129-152
    • Carpenter, G.1    Grossberg, S.2
  • 85
    • 0012141368 scopus 로고    scopus 로고
    • A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery
    • Springer-Verlag, ISBN: 3-540-43330-9, A. Ghosh, S. Tsutsui (Eds.)
    • Freitas A. A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery. Advances in Evolutionary Computing: Theory and Applications 2003, 819-845. Springer-Verlag, ISBN: 3-540-43330-9. A. Ghosh, S. Tsutsui (Eds.).
    • (2003) Advances in Evolutionary Computing: Theory and Applications , pp. 819-845
    • Freitas, A.1
  • 87
    • 21644439185 scopus 로고    scopus 로고
    • An Efficient Ga-Based Clustering Technique
    • Lin H.-J., Yang F.-W., Kao Y.-T. An Efficient Ga-Based Clustering Technique. Tamkang J. Sci. Eng. 2005, 8(2):113-122.
    • (2005) Tamkang J. Sci. Eng. , vol.8 , Issue.2 , pp. 113-122
    • Lin, H.-J.1    Yang, F.-W.2    Kao, Y.-T.3
  • 89
    • 0033715579 scopus 로고    scopus 로고
    • Genetic Algorithm-Based Clustering Technique
    • Maulik U., Bandyopadhyay S. Genetic Algorithm-Based Clustering Technique. Pattern Recognit. 2000, 33:1455-1465.
    • (2000) Pattern Recognit. , vol.33 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 90
    • 33846058413 scopus 로고    scopus 로고
    • Using Genetic Algorithms in Clustering Problems
    • University of Greenwich, UK, R.J. Abrahart, B.H. Carlisle (Eds.)
    • Painho M., Bacao F. Using Genetic Algorithms in Clustering Problems. Proceedings of the 5th International Conference on GeoComputation 2000, University of Greenwich, UK. R.J. Abrahart, B.H. Carlisle (Eds.).
    • (2000) Proceedings of the 5th International Conference on GeoComputation
    • Painho, M.1    Bacao, F.2
  • 92
    • 0002317960 scopus 로고
    • Genetic Algorithm for Clustering with an Ordered Representation
    • Morgan Kaufmann Publishers Inc., San Francisco, ISBN: 1-55860-208-9, R.K. Belew, L.B. Booker (Eds.)
    • Bhuyan J.N., Raghavan V.V., Venkatesh K.E. Genetic Algorithm for Clustering with an Ordered Representation. Proceedings of the Fourth International Conference on Genetic Algorithms 1991, 408-415. Morgan Kaufmann Publishers Inc., San Francisco, ISBN: 1-55860-208-9. R.K. Belew, L.B. Booker (Eds.).
    • (1991) Proceedings of the Fourth International Conference on Genetic Algorithms , pp. 408-415
    • Bhuyan, J.N.1    Raghavan, V.V.2    Venkatesh, K.E.3
  • 94
    • 0022559425 scopus 로고
    • Optimization of Control Parameters for Genetic Algorithms
    • ISSN 0018-9472
    • Grefenstette J. Optimization of Control Parameters for Genetic Algorithms. IEEE Trans. Syst. Man Cybern. 1986, 16(1):122-128. ISSN 0018-9472.
    • (1986) IEEE Trans. Syst. Man Cybern. , vol.16 , Issue.1 , pp. 122-128
    • Grefenstette, J.1
  • 95
    • 26444479778 scopus 로고
    • Optimization by Simulated Annealing
    • Kirpatrick S., Gelatt C.D., Vecchi M.P. Optimization by Simulated Annealing. Science 1983, 220:671-680.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 96
  • 97
    • 0026853956 scopus 로고
    • A Practical Application of Simulated Annealing to Clustering
    • Brown D.E., Huntley C.L. A Practical Application of Simulated Annealing to Clustering. Pattern Recognit. 1992, 25(4):401-412.
    • (1992) Pattern Recognit. , vol.25 , Issue.4 , pp. 401-412
    • Brown, D.E.1    Huntley, C.L.2
  • 98
    • 0024475960 scopus 로고
    • Experiments in Projection and Clustering by Simulated Annealing
    • Klein R.W., Dubes R.C. Experiments in Projection and Clustering by Simulated Annealing. Pattern Recognit. 1989, 22(2):213-220.
    • (1989) Pattern Recognit. , vol.22 , Issue.2 , pp. 213-220
    • Klein, R.W.1    Dubes, R.C.2
  • 99
    • 0026359031 scopus 로고
    • A Simulated Annealing Algorithm for the Clustering Problem
    • Selim S.Z., Al-Sultan K.S. A Simulated Annealing Algorithm for the Clustering Problem. Pattern Recognit. 1991, 24(10):1003-1008.
    • (1991) Pattern Recognit. , vol.24 , Issue.10 , pp. 1003-1008
    • Selim, S.Z.1    Al-Sultan, K.S.2
  • 101
    • 0002820059 scopus 로고
    • Introduction to Data Structures and Algorithms Related to Information Retrieval
    • Prentice-Hall, Englewood Cliffs, New Jersey, ISBN/ISSN: 0-13-463837-9, W.B. Frakes, R.A. Baeza-Yates (Eds.)
    • Baeza-Yates R.A. Introduction to Data Structures and Algorithms Related to Information Retrieval. Information Retrieval: Data Structures and Algorithms 1992, 1327. Prentice-Hall, Englewood Cliffs, New Jersey, ISBN/ISSN: 0-13-463837-9. W.B. Frakes, R.A. Baeza-Yates (Eds.).
    • (1992) Information Retrieval: Data Structures and Algorithms , pp. 1327
    • Baeza-Yates, R.A.1
  • 102
    • 0004215426 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Norwell, MA
    • Glover F., Laguna M. Tabu Search 1997, Kluwer Academic Publishers, Norwell, MA.
    • (1997) Tabu Search
    • Glover, F.1    Laguna, M.2
  • 104
    • 0036887530 scopus 로고    scopus 로고
    • Clustering Categorical Data Sets Using Tabu Search Techniques
    • Ng M.K., Wong J.C. Clustering Categorical Data Sets Using Tabu Search Techniques. Pattern Recognit. 2002, 35(12):2783-2790.
    • (2002) Pattern Recognit. , vol.35 , Issue.12 , pp. 2783-2790
    • Ng, M.K.1    Wong, J.C.2
  • 105
    • 0029478402 scopus 로고
    • A Tabu Search Approach to the Clustering Problem
    • Al-Sultan K.S. A Tabu Search Approach to the Clustering Problem. Pattern Recognit. 1995, 28(9):1443-1451.
    • (1995) Pattern Recognit. , vol.28 , Issue.9 , pp. 1443-1451
    • Al-Sultan, K.S.1
  • 106
    • 0031353193 scopus 로고    scopus 로고
    • A Tabu Search Based Algorithm for the Fuzzy Clustering Problem
    • Al-Sultan K.S., Fedjki C.A. A Tabu Search Based Algorithm for the Fuzzy Clustering Problem. Pattern Recognit. 1997, 30(12):2023-2030.
    • (1997) Pattern Recognit. , vol.30 , Issue.12 , pp. 2023-2030
    • Al-Sultan, K.S.1    Fedjki, C.A.2
  • 107
    • 2142687208 scopus 로고    scopus 로고
    • A Unified Framework for Model-Based Clustering
    • Zhong S., Ghosh J. A Unified Framework for Model-Based Clustering. J. Mach. Learn. Res. 2003, 4:1001-1037.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 1001-1037
    • Zhong, S.1    Ghosh, J.2
  • 108
    • 0027632248 scopus 로고
    • "Neural-Gas" Network for Vector Quantization and Its Application to Time-Series Prediction
    • Martinetz T.M., Berkovich S.G., Schulten K.J. "Neural-Gas" Network for Vector Quantization and Its Application to Time-Series Prediction. IEEE Trans. Neural Netw. 1993, 4(4):558-569.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 109
    • 0023523514 scopus 로고
    • How Many Clusters Are Best? - An Experiment
    • Dubes R.C. How Many Clusters Are Best? - An Experiment. Pattern Recognit. 1987, 20(6):645-663.
    • (1987) Pattern Recognit. , vol.20 , Issue.6 , pp. 645-663
    • Dubes, R.C.1
  • 111
    • 0003126321 scopus 로고
    • A General Theory of Classificatory Sorting Strategies: II. Clustering Systems
    • Lance G.N., Williams W.T. A General Theory of Classificatory Sorting Strategies: II. Clustering Systems. Comput. J. 1967, 10:271-277.
    • (1967) Comput. J. , vol.10 , pp. 271-277
    • Lance, G.N.1    Williams, W.T.2
  • 112
    • 0014185876 scopus 로고
    • A Comparison of Some Methods of Cluster Analysis
    • Gower J.C. A Comparison of Some Methods of Cluster Analysis. Biometrics 1967, 23:623-628.
    • (1967) Biometrics , vol.23 , pp. 623-628
    • Gower, J.C.1
  • 113
    • 9444222978 scopus 로고
    • The Application of Computers to Taxonomy
    • Sneath P.H.A. The Application of Computers to Taxonomy. J. Gen. Microbiol. 1957, 17:201-226.
    • (1957) J. Gen. Microbiol. , vol.17 , pp. 201-226
    • Sneath, P.H.A.1
  • 114
    • 0000825481 scopus 로고
    • A Statistical Method for Evaluating Systematic Relationships
    • Sokal R., Michener C.D. A Statistical Method for Evaluating Systematic Relationships. Univ. Kans. Sci. Bull. 1958, 38:1409-1438.
    • (1958) Univ. Kans. Sci. Bull. , vol.38 , pp. 1409-1438
    • Sokal, R.1    Michener, C.D.2
  • 115
    • 84944178665 scopus 로고
    • Hierarchical Grouping to Optimize an Objective Function
    • Ward J. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58:236-244.
    • (1963) J. Am. Stat. Assoc. , vol.58 , pp. 236-244
    • Ward, J.1
  • 116
    • 0027667723 scopus 로고
    • General Formulation and Evaluation of Agglomerative Clustering Methods with Metric and Non-Metric Distances
    • Boberg J., Salakoski T. General Formulation and Evaluation of Agglomerative Clustering Methods with Metric and Non-Metric Distances. Pattern Recognit. 1993, 26(9):1395-1406.
    • (1993) Pattern Recognit. , vol.26 , Issue.9 , pp. 1395-1406
    • Boberg, J.1    Salakoski, T.2
  • 117
    • 34250115918 scopus 로고
    • An Examination of Procedures for Determining the Number of Clusters in a Data Set
    • Milligan G.W., Cooper M.C. An Examination of Procedures for Determining the Number of Clusters in a Data Set. Psychometrika 1985, 50(2):159-179.
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 118
    • 0025919961 scopus 로고
    • An Efficient Agglomerative Clustering Algorithm Using a Heap
    • Kurita T. An Efficient Agglomerative Clustering Algorithm Using a Heap. Pattern Recognit. 1991, 24:205-209.
    • (1991) Pattern Recognit. , vol.24 , pp. 205-209
    • Kurita, T.1
  • 119
    • 0020848951 scopus 로고
    • A Survey of Recent Advances in Hierarchical Clustering Algorithms
    • Murtagh F. A Survey of Recent Advances in Hierarchical Clustering Algorithms. Comput. J. 1983, 26(4):354-359.
    • (1983) Comput. J. , vol.26 , Issue.4 , pp. 354-359
    • Murtagh, F.1
  • 120
    • 0000034040 scopus 로고
    • Complexities of Hierarchic Clustering Algorithms
    • Murtagh F. Complexities of Hierarchic Clustering Algorithms. Comput. Stat. Q. 1984, 1(2):101-113.
    • (1984) Comput. Stat. Q. , vol.1 , Issue.2 , pp. 101-113
    • Murtagh, F.1
  • 122
    • 0036606522 scopus 로고    scopus 로고
    • Multi-Level Clustering and Its Visualization for Exploratory Spatial Analysis
    • Estivill-Castro V., Lee I. Multi-Level Clustering and Its Visualization for Exploratory Spatial Analysis. Geoinformatica 2002, 6(2):123-152.
    • (2002) Geoinformatica , vol.6 , Issue.2 , pp. 123-152
    • Estivill-Castro, V.1    Lee, I.2
  • 123
    • 0029359322 scopus 로고
    • Divisive Clustering of Symbolic Objects Using the Concepts of Both Similarity and Dissimilarity
    • Gowda C.K., Ravi T.V. Divisive Clustering of Symbolic Objects Using the Concepts of Both Similarity and Dissimilarity. Pattern Recognit. 1995, 28(8):1277-1282.
    • (1995) Pattern Recognit. , vol.28 , Issue.8 , pp. 1277-1282
    • Gowda, C.K.1    Ravi, T.V.2
  • 125
    • 2542613410 scopus 로고    scopus 로고
    • Scalable Clustering Methods for Data Mining
    • Lawrence Ealbaum, Mahwah, New Jersey, N. Ye (Ed.)
    • Ghosh J. Scalable Clustering Methods for Data Mining. Handbook of Data Mining 2003, 247-277. Lawrence Ealbaum, Mahwah, New Jersey. N. Ye (Ed.).
    • (2003) Handbook of Data Mining , pp. 247-277
    • Ghosh, J.1
  • 127
    • 21944442892 scopus 로고    scopus 로고
    • BIRCH: A New Data Clustering Algorithm and Its Applications
    • Zhang T., Ramakrishnan R., Livny M. BIRCH: A New Data Clustering Algorithm and Its Applications. Data Min. Knowledge Discov. 1997, 1(2):141-182.
    • (1997) Data Min. Knowledge Discov. , vol.1 , Issue.2 , pp. 141-182
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 128
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling
    • Karypis G., Han E., Kumar V. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Comp. Data Anal. Min. (Special Issue) 1999, 32(8):68-75.
    • (1999) IEEE Comp. Data Anal. Min. (Special Issue) , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 129
    • 0034133653 scopus 로고    scopus 로고
    • WaveCluster: A Wavelet Based Clustering Approach for Spatial Data in Very Large Databases
    • Sheikholeslami G., Chatterjee S., Zhang A. WaveCluster: A Wavelet Based Clustering Approach for Spatial Data in Very Large Databases. VLDB J. 2000, 8(3-4):289-304.
    • (2000) VLDB J. , vol.8 , Issue.3-4 , pp. 289-304
    • Sheikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 131
    • 14644401723 scopus 로고    scopus 로고
    • Combining Partitional and Hierarchical Algorithms for Robust and Efficient Data Clustering with Cohesion Self-Merging
    • Lin C.-R., Chen M.-S. Combining Partitional and Hierarchical Algorithms for Robust and Efficient Data Clustering with Cohesion Self-Merging. IEEE Trans. Knowledge Data Eng. 2005, 17(2):145-159.
    • (2005) IEEE Trans. Knowledge Data Eng. , vol.17 , Issue.2 , pp. 145-159
    • Lin, C.-R.1    Chen, M.-S.2
  • 132
    • 0019713467 scopus 로고
    • A Hybrid Clustering Procedure for Concentric and Chain-Like Clusters
    • Murty N.M., Krishna G. A Hybrid Clustering Procedure for Concentric and Chain-Like Clusters. Int. J. Comp. Inf. Sci. 1981, 10(6):397-412.
    • (1981) Int. J. Comp. Inf. Sci. , vol.10 , Issue.6 , pp. 397-412
    • Murty, N.M.1    Krishna, G.2
  • 133
    • 84882537316 scopus 로고    scopus 로고
    • Hybrid O ( n n ) Clustering for Sequential Web Usage Mining
    • Springer, Berlin, A. Sattar, B.H. Kang (Eds.) Proceedings of the 19th Australian Joint Conference on Artificial Intelligence (AI'06)
    • Yang J., Lee I. Hybrid O ( n n ) Clustering for Sequential Web Usage Mining. Lecture Notes Comput. Sci. 2006, Vol. 4304:1022-1026. Springer, Berlin. A. Sattar, B.H. Kang (Eds.).
    • (2006) Lecture Notes Comput. Sci. , vol.4304 , pp. 1022-1026
    • Yang, J.1    Lee, I.2
  • 134
    • 38249022112 scopus 로고
    • On Clustering Problems with Connected Optima in Euclidean Spaces
    • Boros E., Hammer P.L. On Clustering Problems with Connected Optima in Euclidean Spaces. Discrete Math. 1989, 75(1-3):81-89.
    • (1989) Discrete Math. , vol.75 , Issue.1-3 , pp. 81-89
    • Boros, E.1    Hammer, P.L.2
  • 135
    • 3342918440 scopus 로고    scopus 로고
    • Clustering with Obstacles for Geographical Data Mining
    • Estivill-Castro V., Lee I. Clustering with Obstacles for Geographical Data Mining. ISPRS 2004, 59(1-2):21-34.
    • (2004) ISPRS , vol.59 , Issue.1-2 , pp. 21-34
    • Estivill-Castro, V.1    Lee, I.2
  • 136
    • 9444294778 scopus 로고    scopus 로고
    • From Instance-Level Constraints to Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering
    • Morgan Kaufmann, Sydney, Australia, C. Sammut, A.G. Hoffmann (Eds.)
    • Klein S.D., Kamvar D., Manning C.D. From Instance-Level Constraints to Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering. Proceedings of the 9th International Conference on Machine Learning 2002, 307-314. Morgan Kaufmann, Sydney, Australia. C. Sammut, A.G. Hoffmann (Eds.).
    • (2002) Proceedings of the 9th International Conference on Machine Learning , pp. 307-314
    • Klein, S.D.1    Kamvar, D.2    Manning, C.D.3
  • 137
    • 84882527450 scopus 로고
    • Proceedings of the 8th International Conference on Database Theory
    • Springer, Berlin, J.V. Bussche, V. Vianu (Eds.)
    • Tung A.K.H., Ng R.T., Lakshmanan V.S., Han J. Proceedings of the 8th International Conference on Database Theory. Lecture Notes Artifi. Intell. 1973, Vol. 1973:405-419. Springer, Berlin. J.V. Bussche, V. Vianu (Eds.).
    • (1973) Lecture Notes Artifi. Intell. , vol.1973 , pp. 405-419
    • Tung, A.K.H.1    Ng, R.T.2    Lakshmanan, V.S.3    Han, J.4
  • 140
    • 0036643522 scopus 로고    scopus 로고
    • Argument Free Clustering via Boundary Extraction for Massive Point-Data Sets
    • Estivill-Castro V., Lee I. Argument Free Clustering via Boundary Extraction for Massive Point-Data Sets. Comput. Environ. Urban Syst. 2002, 26(4):315-334.
    • (2002) Comput. Environ. Urban Syst. , vol.26 , Issue.4 , pp. 315-334
    • Estivill-Castro, V.1    Lee, I.2
  • 141
    • 0038534791 scopus 로고
    • Constrained Delaunay Triangulations
    • Chew L.P. Constrained Delaunay Triangulations. Algorithmica 1989, 4:97-108.
    • (1989) Algorithmica , vol.4 , pp. 97-108
    • Chew, L.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.