-
1
-
-
0033233677
-
Sylvester's question: The probability that n points are in convex position
-
MR1742899
-
BáRáNY, I. (1999). Sylvester's question: The probability that n points are in convex position. Ann. Probab. 27 2020-2034. MR1742899
-
(1999)
Ann. Probab.
, vol.27
, pp. 2020-2034
-
-
Bárány, I.1
-
2
-
-
0041414903
-
A note on Sylvester's four-point problem
-
MR1877770
-
BáRáNY, I. (2001). A note on Sylvester's four-point problem. Studia Sci. Math. Hungar. 38 73-77. MR1877770
-
(2001)
Studia Sci. Math. Hungar.
, vol.38
, pp. 73-77
-
-
Bárány, I.1
-
3
-
-
34547888669
-
The exact distribution of the number of vertices of a random convex chain
-
MR2343258
-
BUCHTA, C. (2006). The exact distribution of the number of vertices of a random convex chain. Mathematika 53 247-254. MR2343258
-
(2006)
Mathematika
, vol.53
, pp. 247-254
-
-
Buchta, C.1
-
4
-
-
35148822926
-
Stein's method for normal approximation
-
In An Introduction to Stein's Method (A. Barbour and L. Chen, eds.). Singapore Univ. Press, Singapore.
-
CHEN, L. and SHAO, Q. (2005). Stein's method for normal approximation. In An Introduction to Stein's Method (A. Barbour and L. Chen, eds.). Singapore Univ. Press, Singapore.
-
(2005)
-
-
Chen, L.1
Shao, Q.2
-
5
-
-
84866733619
-
Simplicial homology of random configurations
-
Preprint. Available at arXiv:1103.4457.
-
DECREUSEFOND, L., FERRAZ, E., RANDRIAM, H. and VERGNE, A. (2011). Simplicial homology of random configurations. Preprint. Available at arXiv:1103.4457.
-
(2011)
-
-
Decreusefond, L.1
Ferraz, E.2
Randriam, H.3
Vergne, A.4
-
6
-
-
0001334383
-
Symmetric statistics, Poisson point processes, and multiple Wiener integrals
-
MR0707925
-
DYNKIN, E. B. andMANDELBAUM, A. (1983). Symmetric statistics, Poisson point processes, and multiple Wiener integrals. Ann. Statist. 11 739-745. MR0707925
-
(1983)
Ann. Statist.
, vol.11
, pp. 739-745
-
-
Dynkin, E.B.1
Mandelbaum, A.2
-
7
-
-
0000749983
-
Convergence rates for U-statistics and related statistics
-
MR0336788
-
GRAMS, W. F. and SERFLING, R. J. (1973). Convergence rates for U-statistics and related statistics. Ann. Statist. 1 153-160. MR0336788
-
(1973)
Ann. Statist.
, vol.1
, pp. 153-160
-
-
Grams, W.F.1
Serfling, R.J.2
-
8
-
-
70350395810
-
One-dimensional geometric random graphs with nonvanishing densities, I. A strong zero-one law for connectivity.
-
MR2597199
-
HAN, G. and MAKOWSKI, A. M. (2009). One-dimensional geometric random graphs with nonvanishing densities. I. A strong zero-one law for connectivity. IEEE Trans. Inform. Theory 55 5832-5839. MR2597199
-
(2009)
IEEE Trans. Inform. Theory
, vol.55
, pp. 5832-5839
-
-
Han, G.1
Makowski, A.M.2
-
9
-
-
78650935464
-
Central limit theorems for motion-invariant Poisson hyperplanes in expanding convex bodies
-
MR2809425
-
HEINRICH, L. (2009). Central limit theorems for motion-invariant Poisson hyperplanes in expanding convex bodies. Rend. Circ. Mat. Palermo (2) Suppl. 81 187-212. MR2809425
-
(2009)
Rend. Circ. Mat. Palermo
, vol.81
, Issue.2 SUPPL.
, pp. 187-212
-
-
Heinrich, L.1
-
10
-
-
33746907869
-
Central limit theorems for Poisson hyperplane tessellations
-
MR2244437
-
HEINRICH, L., SCHMIDT, H. and SCHMIDT, V. (2006). Central limit theorems for Poisson hyperplane tessellations. Ann. Appl. Probab. 16 919-950. MR2244437
-
(2006)
Ann. Appl. Probab.
, vol.16
, pp. 919-950
-
-
Heinrich, L.1
Schmidt, H.2
Schmidt, V.3
-
11
-
-
0001744704
-
A class of statistics with asymptotically normal distribution
-
MR0026294
-
HOEFFDING, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Statistics 19 293-325. MR0026294
-
(1948)
Ann. Math. Statistics
, vol.19
, pp. 293-325
-
-
Hoeffding, W.1
-
12
-
-
0010773289
-
Covariance identities and inequalities for functionals on Wiener and Poisson spaces
-
MR1330776
-
HOUDRé, C. and PéREZ-ABREU, V. (1995). Covariance identities and inequalities for functionals on Wiener and Poisson spaces. Ann. Probab. 23 400-419. MR1330776
-
(1995)
Ann. Probab.
, vol.23
, pp. 400-419
-
-
Houdré, C.1
Pérez-Abreu, V.2
-
13
-
-
84972503912
-
Multiple Wiener integral
-
MR0044064
-
ITô, K. (1951). Multiple Wiener integral. J. Math. Soc. Japan 3 157-169. MR0044064
-
(1951)
J. Math. Soc. Japan
, vol.3
, pp. 157-169
-
-
Itô, K.1
-
14
-
-
84967728382
-
Spectral type of the shift transformation of differential processes with stationary increments
-
MR0077017
-
ITô, K. (1956). Spectral type of the shift transformation of differential processes with stationary increments. Trans. Amer. Math. Soc. 81 253-263. MR0077017
-
(1956)
Trans. Amer. Math. Soc.
, vol.81
, pp. 253-263
-
-
Itô, K.1
-
15
-
-
0004201402
-
Foundations of Modern Probability, 2nd ed
-
Springer, New York. MR1876169
-
KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York. MR1876169
-
(2002)
-
-
Kallenberg, O.1
-
16
-
-
0004198811
-
Theory of U-statistics
-
Mathematics and Its Applications 273. Kluwer Academic, Dordrecht. MR1472486
-
KOROLJUK, V. S. and BOROVSKICH, Y. V. (1994). Theory of U-statistics. Mathematics and Its Applications 273. Kluwer Academic, Dordrecht. MR1472486
-
(1994)
-
-
Koroljuk, V.S.1
Borovskich, Y.V.2
-
17
-
-
84874853664
-
Fine Gaussian fluctuations on the Poisson space I: Contractions, cumulants and geometric random graphs
-
LACHIèZE-REY, R. and PECCATI, G. (2013). Fine Gaussian fluctuations on the Poisson space I: Contractions, cumulants and geometric random graphs. Electron. J. Probab. 18 1-32.
-
(2013)
Electron. J. Probab.
, vol.18
, pp. 1-32
-
-
Lachièze-Rey, R.1
Peccati, G.2
-
18
-
-
84874913669
-
Fine Gaussian fluctuations on the Poisson space II: Rescaled kernels, marked processes and geometric U-statistics
-
Stochastic Process. Appl. To appear
-
LACHIèZE-REY, R. and PECCATI, G. (2012). Fine Gaussian fluctuations on the Poisson space II: Rescaled kernels, marked processes and geometric U-statistics. Stochastic Process. Appl. To appear.
-
(2012)
-
-
Lachièze-Rey, R.1
Peccati, G.2
-
19
-
-
79952897621
-
Poisson process Fock space representation, chaos expansion and covariance inequalities
-
MR2824870
-
LAST, G. and PENROSE, M. D. (2011). Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Related Fields 150 663-690. MR2824870
-
(2011)
Probab. Theory Related Fields
, vol.150
, pp. 663-690
-
-
Last, G.1
Penrose, M.D.2
-
20
-
-
0004007610
-
U-Statistics: Theory and Practice
-
Statistics: Textbooks and Monographs 110. Dekker, New York. MR1075417
-
LEE, A. J. (1990). U-Statistics: Theory and Practice. Statistics: Textbooks and Monographs 110. Dekker, New York. MR1075417
-
(1990)
-
-
Lee, A.J.1
-
21
-
-
0037282567
-
Random channel assignment in the plane
-
MR1954610
-
MCDIARMID, C. (2003). Random channel assignment in the plane. Random Structures Algorithms 22 187-212. MR1954610
-
(2003)
Random Structures Algorithms
, vol.22
, pp. 187-212
-
-
Mcdiarmid, C.1
-
22
-
-
0034249364
-
Variational analysis of functionals of Poisson processes
-
MR1855179
-
MOLCHANOV, I. and ZUYEV, S. (2000). Variational analysis of functionals of Poisson processes. Math. Oper. Res. 25 485-508. MR1855179
-
(2000)
Math. Oper. Res.
, vol.25
, pp. 485-508
-
-
Molchanov, I.1
Zuyev, S.2
-
23
-
-
67349162602
-
Two-point concentration in random geometric graphs
-
MR2501248
-
MÜLLER, T. (2008). Two-point concentration in random geometric graphs. Combinatorica 28 529-545. MR2501248
-
(2008)
Combinatorica
, vol.28
, pp. 529-545
-
-
Müller, T.1
-
25
-
-
0000568691
-
Anticipative calculus for the Poisson process based on the Fock space
-
In Séminaire de Probabilités, XXIV, 1988/89. Lecture Notes in Math, Springer, Berlin. MR1071538
-
NUALART, D. andVIVES, J. (1990). Anticipative calculus for the Poisson process based on the Fock space. In Séminaire de Probabilités, XXIV, 1988/89. Lecture Notes in Math. 1426 154-165. Springer, Berlin. MR1071538
-
(1990)
, vol.1426
, pp. 154-165
-
-
Nualart, D.1
Vives, J.2
-
26
-
-
0012483616
-
Quelques théorèmes centraux limites pour les processus Poissoniens de droites dans le plan
-
MR1663517
-
PAROUX, K. (1998). Quelques théorèmes centraux limites pour les processus Poissoniens de droites dans le plan. Adv. in Appl. Probab. 30 640-656. MR1663517
-
(1998)
Adv. in Appl. Probab.
, vol.30
, pp. 640-656
-
-
Paroux, K.1
-
27
-
-
77953608052
-
Stein's method and normal approximation of Poisson functionals
-
MR2642882
-
PECCATI, G., SOLé, J. L., TAQQU, M. S. and UTZET, F. (2010). Stein's method and normal approximation of Poisson functionals. Ann. Probab. 38 443-478. MR2642882
-
(2010)
Ann. Probab.
, vol.38
, pp. 443-478
-
-
Peccati, G.1
Solé, J.L.2
Taqqu, M.S.3
Utzet, F.4
-
28
-
-
78649700173
-
Wiener Chaos: Moments, Cumulants and Diagrams: A Survey With Computer Implementation
-
Bocconi & Springer Series 1. Springer, Milan. MR2791919
-
PECCATI, G. and TAQQU, M. S. (2011). Wiener Chaos: Moments, Cumulants and Diagrams: A Survey With Computer Implementation. Bocconi & Springer Series 1. Springer, Milan. MR2791919
-
(2011)
-
-
Peccati, G.1
Taqqu, M.S.2
-
29
-
-
78649701667
-
Multi-dimensional Gaussian fluctuations on the Poisson space
-
MR2727319
-
PECCATI, G. and ZHENG, C. (2010). Multi-dimensional Gaussian fluctuations on the Poisson space. Electron. J. Probab. 15 1487-1527. MR2727319
-
(2010)
Electron. J. Probab.
, vol.15
, pp. 1487-1527
-
-
Peccati, G.1
Zheng, C.2
-
30
-
-
0012535670
-
Random Geometric Graphs
-
Oxford Studies in Probability 5. Oxford Univ. Press, Oxford. MR1986198
-
PENROSE, M. (2003). Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford. MR1986198
-
(2003)
-
-
Penrose, M.1
-
31
-
-
0003506783
-
Convex Bodies: The Brunn-Minkowski Theory
-
Encyclopedia of Mathematics and Its Applications 44. Cambridge Univ. Press, Cambridge. MR1216521
-
SCHNEIDER, R. (1993). Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and Its Applications 44. Cambridge Univ. Press, Cambridge. MR1216521
-
(1993)
-
-
Schneider, R.1
-
32
-
-
70249105840
-
Stochastic and Integral Geometry
-
Springer, Berlin. MR2455326
-
SCHNEIDER, R. and WEIL, W. (2008). Stochastic and Integral Geometry. Springer, Berlin. MR2455326
-
(2008)
-
-
Schneider, R.1
Weil, W.2
-
33
-
-
84888395698
-
Exact and asymptotic results for intrinsic volumes of Poisson k-flat processes
-
Unpublished manuscript. Available at arxiv:1011.5777.
-
SCHULTE, M. and THAELE, C. (2011). Exact and asymptotic results for intrinsic volumes of Poisson k-flat processes. Unpublished manuscript. Available at arxiv:1011.5777.
-
(2011)
-
-
Schulte, M.1
Thaele, C.2
-
34
-
-
84866179212
-
The scaling limit of Poisson-driven order statistics with applications in geometric probability
-
MR2971726
-
SCHULTE, M. and THÄLE, C. (2012). The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stochastic Process. Appl. 122 4096-4120. MR2971726
-
(2012)
Stochastic Process. Appl.
, vol.122
, pp. 4096-4120
-
-
Schulte, M.1
Thäle, C.2
-
35
-
-
0003444918
-
Stochastic Geometry and Its Applications
-
Wiley, Chichester. MR0895588
-
STOYAN, D., KENDALL, W. S. andMECKE, J. (1987). Stochastic Geometry and Its Applications. Wiley, Chichester. MR0895588
-
(1987)
-
-
Stoyan, D.1
Kendall, W.S.2
Mecke, J.3
-
36
-
-
0000180793
-
On multiple Poisson stochastic integrals and associated Markov semigroups
-
MR0764148
-
SURGAILIS, D. (1984). On multiple Poisson stochastic integrals and associated Markov semigroups. Probab. Math. Statist. 3 217-239. MR0764148
-
(1984)
Probab. Math. Statist.
, vol.3
, pp. 217-239
-
-
Surgailis, D.1
-
37
-
-
0000786435
-
The homogeneous chaos
-
MR1507356
-
WIENER, N. (1938). The homogeneous chaos. Amer. J. Math. 60 897-936. MR1507356
-
(1938)
Amer. J. Math.
, vol.60
, pp. 897-936
-
-
Wiener, N.1
-
38
-
-
0034367243
-
A new modified logarithmic Sobolev inequality for Poisson point processes and several applications
-
MR1800540
-
WU, L. (2000). A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Related Fields 118 427-438. MR1800540
-
(2000)
Probab. Theory Related Fields
, vol.118
, pp. 427-438
-
-
Wu, L.1
|