-
2
-
-
0001077489
-
Stein's method and Poisson process convergence
-
A.D. Barbour Stein's method and Poisson process convergence J. Appl. Probab. 25A 1988 175 184
-
(1988)
J. Appl. Probab.
, vol.A25
, pp. 175-184
-
-
Barbour, A.D.1
-
5
-
-
77949295036
-
Gamma distributions for stationary Poisson flat processes
-
V. Baumstark, and G. Last Gamma distributions for stationary Poisson flat processes Adv. Appl. Probab. 41 2009 911 939
-
(2009)
Adv. Appl. Probab.
, vol.41
, pp. 911-939
-
-
Baumstark, V.1
Last, G.2
-
8
-
-
0020145452
-
The limit distribution for maxima of 'weighted' r th -nearest-neighbour distances
-
N. Henze The limit distribution for maxima of 'weighted' r th -nearest-neighbour distances J. Appl. Probab. 19 1982 344 354
-
(1982)
J. Appl. Probab.
, vol.19
, pp. 344-354
-
-
Henze, N.1
-
9
-
-
0030143848
-
The limit distribution of the largest interpoint distance from a symmetric Kotz sample
-
N. Henze, and T. Klein The limit distribution of the largest interpoint distance from a symmetric Kotz sample J. Multivariate Anal. 57 1996 228 239
-
(1996)
J. Multivariate Anal.
, vol.57
, pp. 228-239
-
-
Henze, N.1
Klein, T.2
-
10
-
-
0037360622
-
Distance measurements on processes of flats
-
D. Hug, G. Last, and W. Weil Distance measurements on processes of flats Adv. Appl. Probab. 35 2003 70 95
-
(2003)
Adv. Appl. Probab.
, vol.35
, pp. 70-95
-
-
Hug, D.1
Last, G.2
Weil, W.3
-
11
-
-
38249037008
-
Poisson convergence and Poisson processes with applications to random graphs
-
S. Janson Poisson convergence and Poisson processes with applications to random graphs Stochastic Process. Appl. 26 1987 1 30
-
(1987)
Stochastic Process. Appl.
, vol.26
, pp. 1-30
-
-
Janson, S.1
-
16
-
-
79952897621
-
Poisson process Fock space representation, chaos expansion and covariance inequalities
-
G. Last, and M.D. Penrose Poisson process Fock space representation, chaos expansion and covariance inequalities Probab. Theory Related Fields 150 2011 663 690
-
(2011)
Probab. Theory Related Fields
, vol.150
, pp. 663-690
-
-
Last, G.1
Penrose, M.D.2
-
18
-
-
36549010088
-
Limit theorems for the diameter of a random sample in the unit ball
-
M. Mayer, and I. Molchanov Limit theorems for the diameter of a random sample in the unit ball Extremes 10 2007 151 174
-
(2007)
Extremes
, vol.10
, pp. 151-174
-
-
Mayer, M.1
Molchanov, I.2
-
19
-
-
0000819875
-
A heuristic proof of a long-standing conjecture of D.G. Kendall concerning the shapes of certain large random polygons
-
R.E. Miles A heuristic proof of a long-standing conjecture of D.G. Kendall concerning the shapes of certain large random polygons Ann. Appl. Probab. 27 1995 397 417
-
(1995)
Ann. Appl. Probab.
, vol.27
, pp. 397-417
-
-
Miles, R.E.1
-
20
-
-
0016998446
-
Order statistics, Poisson processes and repairable systems
-
D.R. Miller Order statistics, Poisson processes and repairable systems J. Appl. Probab. 31 1976 519 529
-
(1976)
J. Appl. Probab.
, vol.31
, pp. 519-529
-
-
Miller, D.R.1
-
21
-
-
84861932149
-
On the distribution of typical shortest-path lengths in connected random geometric graphs
-
D. Neuhäuser, C. Hirsch, C. Gloaguen, and V. Schmidt On the distribution of typical shortest-path lengths in connected random geometric graphs Queueing Syst. 71 2012 199 220
-
(2012)
Queueing Syst.
, vol.71
, pp. 199-220
-
-
Neuhäuser, D.1
Hirsch, C.2
Gloaguen, C.3
Schmidt, V.4
-
22
-
-
0000568691
-
Anticipative calculus for the Poisson process based on the Fock space
-
LMN
-
D. Nualart, and J. Vives Anticipative calculus for the Poisson process based on the Fock space Sem. de Proba. XXIV LMN vol. 1426 1993 177
-
(1993)
Sem. de Proba. XXIV
, vol.1426
, pp. 177
-
-
Nualart, D.1
Vives, J.2
-
26
-
-
0036014648
-
Random points on the boundary of smooth convex bodies
-
M. Reitzner Random points on the boundary of smooth convex bodies Trans. Amer. Math. Soc. 354 2002 2243 2278
-
(2002)
Trans. Amer. Math. Soc.
, vol.354
, pp. 2243-2278
-
-
Reitzner, M.1
-
29
-
-
0032593237
-
A duality for Poisson flats
-
R. Schneider A duality for Poisson flats Adv. Appl. Probab. 31 1999 63 68
-
(1999)
Adv. Appl. Probab.
, vol.31
, pp. 63-68
-
-
Schneider, R.1
-
31
-
-
84867847132
-
A central limit theorem for the Poisson-Voronoi approximation
-
M. Schulte, A central limit theorem for the Poisson-Voronoi approximation, Adv. in Appl. Math. (2012), http://dx.doi.org/10.1016/j.aam.2012. 08.001.
-
(2012)
Adv. in Appl. Math
-
-
Schulte, M.1
-
32
-
-
0001611740
-
Short distances, flat triangles and Poisson limits
-
B. Silverman, and T. Brown Short distances, flat triangles and Poisson limits J. Appl. Probab. 15 1978 815 825
-
(1978)
J. Appl. Probab.
, vol.15
, pp. 815-825
-
-
Silverman, B.1
Brown, T.2
-
33
-
-
0000180793
-
On multiple Poisson stochastic integrals and associated Markov semigroups
-
D. Surgailis On multiple Poisson stochastic integrals and associated Markov semigroups Probab. Math. Statist. 3 1984 217 239
-
(1984)
Probab. Math. Statist.
, vol.3
, pp. 217-239
-
-
Surgailis, D.1
|