-
1
-
-
0000380180
-
On central limit theorems in geometrical probability
-
MR1241033
-
AVRAM, F. and BERTSIMAS, D. (1993). On central limit theorems in geometrical probability. Ann. Appl. Probab. 3 1033-1046. MR1241033
-
(1993)
Ann. Appl. Probab.
, vol.3
, pp. 1033-1046
-
-
Avram, F.1
Bertsimas, D.2
-
2
-
-
0012489605
-
A limit theorem for statistics of spatial data
-
MR0569436
-
BADDELEY, A. J. (1980). A limit theorem for statistics of spatial data. Adv. in Appl. Probab. 12 447-461. MR0569436
-
(1980)
Adv. in Appl. Probab.
, vol.12
, pp. 447-461
-
-
Baddeley, A.J.1
-
4
-
-
33744550872
-
Fitting of random tessellation models to cytoskeleton network data
-
To appear
-
BEIL, M., ECKEL, S., FLEISCHER, F., SCHMIDT, H., SCHMIDT, V. and WALTHER, P. (2006). Fitting of random tessellation models to cytoskeleton network data. J. Theoret. Biol. To appear.
-
(2006)
J. Theoret. Biol.
-
-
Beil, M.1
Eckel, S.2
Fleischer, F.3
Schmidt, H.4
Schmidt, V.5
Walther, P.6
-
5
-
-
10944260050
-
Asymptotic properties of estimators for the volume fractions of jointly stationary random sets
-
MR2106346
-
BÖHM, S., HEINRICH, L. and SCHMIDT, V. (2004). Asymptotic properties of estimators for the volume fractions of jointly stationary random sets. Statist. Neerlandica 58 388-406. MR2106346
-
(2004)
Statist. Neerlandica
, vol.58
, pp. 388-406
-
-
Böhm, S.1
Heinrich, L.2
Schmidt, V.3
-
7
-
-
17744364839
-
Stochastic modelling of urban access networks
-
VDE, Berlin
-
GLOAGUEN, C., COUPÉ, P., MAIER, R. and SCHMIDT, V. (2002). Stochastic modelling of urban access networks. In Proc. 10th Internat. Telecommun. Network Strategy Planning Symp. 99-104. VDE, Berlin.
-
(2002)
Proc. 10th Internat. Telecommun. Network Strategy Planning Symp.
, pp. 99-104
-
-
Gloaguen, C.1
Coupé, P.2
Maier, R.3
Schmidt, V.4
-
8
-
-
28544433553
-
Fitting of stochastic telecommunication network models, via distance measures and Monte Carlo tests
-
To appear
-
GLOAGUEN, C., FLEISCHER, F., SCHMIDT, H. and SCHMIDT, V. (2006). Fitting of stochastic telecommunication network models, via distance measures and Monte Carlo tests. In Telecommunication Systems. To appear.
-
(2006)
Telecommunication Systems
-
-
Gloaguen, C.1
Fleischer, F.2
Schmidt, H.3
Schmidt, V.4
-
9
-
-
0007420038
-
Normal approximation for some mean-value estimates of absolutely regular tessellations
-
MR1272628
-
HEINRICH, L. (1994). Normal approximation for some mean-value estimates of absolutely regular tessellations. Math. Methods Statist. 3 1-24. MR1272628
-
(1994)
Math. Methods Statist.
, vol.3
, pp. 1-24
-
-
Heinrich, L.1
-
10
-
-
11744329897
-
Numerical and analytical computation of some second-order characteristics of spatial Poisson-Voronoi tessellations
-
MR1718316
-
HEINRICH, L., KÖRNER, R., MEHLHORN, N. and MUCHE, L. (1998). Numerical and analytical computation of some second-order characteristics of spatial Poisson-Voronoi tessellations. Statistics 31 235-259. MR1718316
-
(1998)
Statistics
, vol.31
, pp. 235-259
-
-
Heinrich, L.1
Körner, R.2
Mehlhorn, N.3
Muche, L.4
-
11
-
-
0033141155
-
Central limit theorem for a class of random measures associated with germ-grain models
-
MR1724553
-
HEINRICH, L. and MOLCHANOV, I. S. (1999). Central limit theorem for a class of random measures associated with germ-grain models. Adv. in Appl. Probab. 31 283-314. MR1724553
-
(1999)
Adv. in Appl. Probab.
, vol.31
, pp. 283-314
-
-
Heinrich, L.1
Molchanov, I.S.2
-
12
-
-
55449105770
-
Second-order properties of the point process of nodes in a stationary Voronoi tessellation
-
(2007). To appear
-
HEINRICH, L. and MUCHE, L. (2007). Second-order properties of the point process of nodes in a stationary Voronoi tessellation. Math. Nachr. To appear.
-
Math. Nachr.
-
-
Heinrich, L.1
Muche, L.2
-
13
-
-
17744389222
-
Limit theorems for stationary tessellations with random inner cell structures
-
MR2135152
-
HEINRICH, L., SCHMIDT, H. and SCHMIDT, V. (2005). Limit theorems for stationary tessellations with random inner cell structures. Adv. in Appl. Probab. 37 25-47. MR2135152
-
(2005)
Adv. in Appl. Probab.
, vol.37
, pp. 25-47
-
-
Heinrich, L.1
Schmidt, H.2
Schmidt, V.3
-
14
-
-
0004256569
-
-
Springer, New York. MR1231974
-
KARR, A. F. (1993). Probability. Springer, New York. MR1231974
-
(1993)
Probability
-
-
Karr, A.F.1
-
16
-
-
0037708521
-
Asymptotic properties of stereological estimators of the volume fraction for stationary random sets
-
MR0644424
-
MASE, S. (1982). Asymptotic properties of stereological estimators of the volume fraction for stationary random sets. J. Appl. Probab. 19 111-126. MR0644424
-
(1982)
J. Appl. Probab.
, vol.19
, pp. 111-126
-
-
Mase, S.1
-
18
-
-
0001871767
-
Statistics for the Boolean model: From the estimation of means to the estimation of distributions
-
MR1315578
-
MOLCHANOV, I. S. (1995). Statistics for the Boolean model: From the estimation of means to the estimation of distributions. Adv. in Appl. Probab. 27 63-86. MR1315578
-
(1995)
Adv. in Appl. Probab.
, vol.27
, pp. 63-86
-
-
Molchanov, I.S.1
-
22
-
-
0004001779
-
-
Wiley, Chichester. MR1770006
-
OKABE, A., BOOTS, B., SUGIHARA, K. and CHIU, S. N. (2000). Spatial Tessellations, 2nd ed. Wiley, Chichester. MR1770006
-
(2000)
Spatial Tessellations, 2nd Ed.
-
-
Okabe, A.1
Boots, B.2
Sugihara, K.3
Chiu, S.N.4
-
23
-
-
33646100293
-
Central limit theorems for functionals of stationary germ-grain models
-
PANTLE, U., SCHMIDT, V. and SPODAREV, E. (2006). Central limit theorems for functionals of stationary germ-grain models. Adv. in Appl. Probab. 38 76-94.
-
(2006)
Adv. in Appl. Probab.
, vol.38
, pp. 76-94
-
-
Pantle, U.1
Schmidt, V.2
Spodarev, E.3
-
24
-
-
0012483616
-
Quelques théorèmes centraux limites pour les processus poissoniens de droites dans le plan
-
MR1663517
-
PAROUX, K. (1998). Quelques théorèmes centraux limites pour les processus poissoniens de droites dans le plan. Adv. in Appl. Probab. 30 640-656. MR1663517
-
(1998)
Adv. in Appl. Probab.
, vol.30
, pp. 640-656
-
-
Paroux, K.1
-
25
-
-
0035497809
-
Central limit theorems for some graphs in computational geometry
-
MR1878288
-
PENROSE, M. D. and YUKICH, J. E. (2001). Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 11 1005-1041. MR1878288
-
(2001)
Ann. Appl. Probab.
, vol.11
, pp. 1005-1041
-
-
Penrose, M.D.1
Yukich, J.E.2
-
26
-
-
0003981318
-
-
North-Holland, Amsterdam. MR0315747
-
RÉNYI, A. (1970). Probability Theory. North-Holland, Amsterdam. MR0315747
-
(1970)
Probability Theory
-
-
Rényi, A.1
-
27
-
-
0008355708
-
Estimation of the intensity of stationary flat processes
-
MR1765167
-
SCHLADITZ, K. (2000). Estimation of the intensity of stationary flat processes. Adv. in Appl. Probab. 32 114-139. MR1765167
-
(2000)
Adv. in Appl. Probab.
, vol.32
, pp. 114-139
-
-
Schladitz, K.1
-
28
-
-
17744399211
-
Joint estimators for the specific intrinsic volumes of stationary random sets
-
MR2138810
-
SCHMIDT, V. and SPODAREV, E. (2005). Joint estimators for the specific intrinsic volumes of stationary random sets. Stochastic Process. Appl. 115 959-981. MR2138810
-
(2005)
Stochastic Process. Appl.
, vol.115
, pp. 959-981
-
-
Schmidt, V.1
Spodarev, E.2
-
32
-
-
0003444918
-
-
Wiley, Chichester. MR0895588
-
STOYAN, D., KENDALL, W. S. and MECKE, J. (1995). Stochastic Geometry and Its Applications, 2nd ed. Wiley, Chichester. MR0895588
-
(1995)
Stochastic Geometry and Its Applications, 2nd Ed.
-
-
Stoyan, D.1
Kendall, W.S.2
Mecke, J.3
|