-
1
-
-
0002487694
-
The use of factor analysis in the statistical analysis of multiple time series
-
ANDERSON, T. (1963). The use of factor analysis in the statistical analysis of multiple time series. Psychometrika 28, 1-25.
-
(1963)
Psychometrika
, vol.28
, pp. 1-25
-
-
Anderson, T.1
-
2
-
-
0037277111
-
Inferential theory for factor models of large dimensions
-
BAI, J. (2003). Inferential theory for factor models of large dimensions. Econometrica 71, 135-71.
-
(2003)
Econometrica
, vol.71
, pp. 135-71
-
-
Bai, J.1
-
3
-
-
0036221554
-
Determining the number of factors in approximate factor models
-
BAI, J. & NG, S. (2002). Determining the number of factors in approximate factor models. Econometrica 70, 191-221. (Pubitemid 34288243)
-
(2002)
Econometrica
, vol.70
, Issue.1
, pp. 191-221
-
-
Bai, J.1
Ng, S.2
-
4
-
-
33846119127
-
Determining the number of primitive shocks in factor models
-
BAI, J. & NG, S. (2007). Determining the number of primitive shocks in factor models. J. Bus. Econ. Statist. 25, 52-60.
-
(2007)
J. Bus. Econ. Statist.
, vol.25
, pp. 52-60
-
-
Bai, J.1
N, G.S.2
-
5
-
-
78650143814
-
Identifying the finite dimensionality of curve time series
-
BATHIA, N.,YAO, Q. & ZIEGLEMANN, F. (2010). Identifying the finite dimensionality of curve time series. Ann. Statist. 38, 3352-86.
-
(2010)
Ann. Statist.
, vol.38
, pp. 3352-86
-
-
Bathia, N.1
Yao, Q.2
Zieglemann, F.3
-
7
-
-
0000915180
-
Funds, factors, and diversification in arbitrage pricing models
-
CHAMBERLAIN, G. (1983). Funds, factors, and diversification in arbitrage pricing models. Econometrica 51, 1305-23.
-
(1983)
Econometrica
, vol.51
, pp. 1305-23
-
-
Chamberlain, G.1
-
8
-
-
0000915180
-
Arbitrage, factor structure, and mean-variance analysis on large asset markets
-
CHAMBERLAIN, G. & ROTHSCHILD, M. (1983). Arbitrage, factor structure, and mean-variance analysis on large asset markets. Econometrica 51, 1281-304.
-
(1983)
Econometrica
, vol.51
, pp. 1281-304
-
-
Chamberlain, G.1
Rothschild, M.2
-
9
-
-
79951685846
-
Weak and strong cross-section dependence and estimation of large panels
-
CHUDIK, A., PESARAN, M. H. & TOSETTI, E. (2011). Weak and strong cross-section dependence and estimation of large panels. Economet. J. 14, C45-90.
-
(2011)
Economet. J.
, vol.14
-
-
Chudik, A.1
Pesaran, M.H.2
Tosetti, E.3
-
10
-
-
34047220176
-
A dynamic semiparametric factor model for implied volatility string dynamics
-
FENGLER, M., HARDLE, W. & MAMMEN, E. (2007). A dynamic semiparametric factor model for implied volatility string dynamics. J. Economet. 5, 189-218.
-
(2007)
J. Economet. 5
, pp. 189-218
-
-
Fengler, M.1
Hardle, W.2
Mammen, E.3
-
11
-
-
0034364595
-
The generalized dynamic-factor model: Identification and estimation
-
FORNI, M., HALLIN, M., LIPPI, M. & REICHLIN, L. (2000). The generalized dynamic-factor model: identification and estimation. Rev. Econ. Statist. 82, 540-54.
-
(2000)
Rev. Econ. Statist.
, vol.82
, pp. 540-54
-
-
Forni, M.1
Hallin, M.2
Lippi, M.3
Reichlin, L.4
-
12
-
-
1642324121
-
The generalized dynamic-factor model: Consistency and rates
-
FORNI, M., HALLIN, M., LIPPI, M. & REICHLIN, L. (2004). The generalized dynamic-factor model: consistency and rates. J. Economet. 119, 231-55.
-
(2004)
J. Economet.
, vol.119
, pp. 231-55
-
-
Forni, M.1
Hallin, M.2
Lippi, M.3
Reichlin, L.4
-
13
-
-
24644522163
-
The generalized dynamic factor model: One-sided estimation and forecasting
-
DOI 10.1198/016214504000002050
-
FORNI, M., HALLIN, M., LIPPI, M. & REICHLIN, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. J. Am. Statist. Assoc. 100, 830-40. (Pubitemid 41276330)
-
(2005)
Journal of the American Statistical Association
, vol.100
, Issue.471
, pp. 830-840
-
-
Forni, M.1
Hallin, M.2
Lippi, M.3
Reichlin, L.4
-
15
-
-
34250778808
-
Determining the number of factors in the general dynamic factor model
-
HALLIN, M. & LISKA, R. (2007). Determining the number of factors in the general dynamic factor model. J. Am. Statist. Assoc. 102, 603-17.
-
(2007)
J. Am. Statist. Assoc.
, vol.102
, pp. 603-17
-
-
Hallin, M.1
Liska, R.2
-
16
-
-
66549088006
-
On consistency and sparsity for principal components analysis in high dimensions
-
JOHNSTONE, I. & ARTHUR, Y. (2009). On consistency and sparsity for principal components analysis in high dimensions. J. Am. Statist. Assoc. 104, 682-93.
-
(2009)
J. Am. Statist. Assoc.
, vol.104
, pp. 682-93
-
-
Johnstone, I.1
Arthur, Y.2
-
17
-
-
44849137877
-
Modelling multiple time series via common factors
-
DOI 10.1093/biomet/asn009
-
PAN, J. & YAO, Q. (2008). Modelling multiple time series via common factors. Biometrika 95, 365-79. (Pubitemid 351797215)
-
(2008)
Biometrika
, vol.95
, Issue.2
, pp. 365-379
-
-
Pan, J.1
Yao, Q.2
-
18
-
-
0000758422
-
Identifying a simplifying structure in time series
-
PEÑA, D. & BOX, G. (1987). Identifying a simplifying structure in time series. J. Am. Statist. Assoc. 82, 836-43.
-
(1987)
J. Am. Statist. Assoc.
, vol.82
, pp. 836-43
-
-
Peña, D.1
Box, G.2
-
19
-
-
29444433399
-
Nonstationary dynamic factor analysis
-
DOI 10.1016/j.jspi.2004.08.020, PII S0378375804003659
-
PEÑA, D. & PONCELA, P. (2006). Nonstationary dynamic factor analysis. J. Statist. Plan. Infer. 136, 1237-57. (Pubitemid 43009020)
-
(2006)
Journal of Statistical Planning and Inference
, vol.136
, Issue.4
, pp. 1237-1257
-
-
Pena, D.1
Poncela, P.2
-
20
-
-
59449098080
-
Universality results for the largest eigenvalues of some sample covariance matrix ensembles
-
PéCHé, S. (2009). Universality results for the largest eigenvalues of some sample covariance matrix ensembles. Prob. Theory Rel. Fields 143, 481-516.
-
(2009)
Prob. Theory Rel. Fields
, vol.143
, pp. 481-516
-
-
Péché, S.1
-
21
-
-
0016335997
-
Applications of principal component analysis and factor analysis in the identification of multivariable systems
-
PRIESTLEY, M., RAO, T. & TONG, J. (1974). Applications of principal component analysis and factor analysis in the identification of multivariable systems. IEEE Trans. Auto. Contr. 19, 703-4.
-
(1974)
IEEE Trans. Auto. Contr.
, vol.19
, pp. 703-4
-
-
Priestley, M.1
Rao, T.2
Tong, J.3
|