메뉴 건너뛰기




Volumn 77, Issue 1-3, 2008, Pages 25-45

Nonparametric Bayesian image segmentation

Author keywords

Clustering; Dirichlet process mixtures; Image segmentation; Markov chain Monte Carlo; Markov random fields; Nonparametric Bayesian methods; Spatial statistics

Indexed keywords

BAYESIAN NETWORKS; CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; HIDDEN MARKOV MODELS; PARAMETERIZATION; STATISTICS;

EID: 39749140347     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-007-0061-0     Document Type: Article
Times cited : (99)

References (38)
  • 1
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric estimation
    • 6
    • Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric estimation. Annals of Statistics, 2(6), 1152-1174.
    • (1974) Annals of Statistics , vol.2 , pp. 1152-1174
    • Antoniak, C.E.1
  • 3
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures (with discussion)
    • 3
    • Besag, J. (1986). On the statistical analysis of dirty pictures (with discussion). Journal of the Royal Statistical Society Series B, 48(3), 259-302.
    • (1986) Journal of the Royal Statistical Society Series B , vol.48 , pp. 259-302
    • Besag, J.1
  • 6
    • 84867186048 scopus 로고    scopus 로고
    • Variational methods for the Dirichlet process
    • 1
    • Blei, D. M., & Jordan, M. I. (2006). Variational methods for the Dirichlet process. Bayesian Analysis, 1(1), 121-144.
    • (2006) Bayesian Analysis , vol.1 , pp. 121-144
    • Blei, D.M.1    Jordan, M.I.2
  • 7
    • 0000642069 scopus 로고
    • Replicating cluster analysis: Method, consistency and validity
    • Breckenridge, J. (1989). Replicating cluster analysis: Method, consistency and validity. Multivariate Behavioral Research, 24, 147-161.
    • (1989) Multivariate Behavioral Research , vol.24 , pp. 147-161
    • Breckenridge, J.1
  • 9
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • Dudoit, S., & Fridyland, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology, 3(7).
    • (2002) Genome Biology , vol.3 , Issue.7
    • Dudoit, S.1    Fridyland, J.2
  • 10
    • 21344479762 scopus 로고
    • Estimating normal means with a Dirichlet process prior
    • 425
    • Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association, 89(425), 268-277.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 268-277
    • Escobar, M.D.1
  • 11
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1(2).
    • (1973) Annals of Statistics , vol.1 , Issue.2
    • Ferguson, T.S.1
  • 15
    • 84949997658 scopus 로고    scopus 로고
    • Parametric distributional clustering for image segmentation
    • Computer vision-ECCV '02 Springer Berlin
    • Hermes, L., Zöller, T., & Buhmann, J. M. (2002). Parametric distributional clustering for image segmentation. In Lecture notes in computer science : Vol. 2352. Computer vision-ECCV '02 (pp. 577-591). Berlin: Springer.
    • (2002) Lecture Notes in Computer Science , vol.2352 , pp. 577-591
    • Hermes, L.1    Zöller, T.2    Buhmann, J.M.3
  • 18
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • 6
    • Lange, T., Roth, V., Braun, M., & Buhmann, J. M. (2004). Stability-based validation of clustering solutions. Neural Computation, 16(6), 1299-1323.
    • (2004) Neural Computation , vol.16 , pp. 1299-1323
    • Lange, T.1    Roth, V.2    Braun, M.3    Buhmann, J.M.4
  • 20
    • 0025952277 scopus 로고
    • Divergence measures based on the Shannon entropy
    • Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37, 145-151.
    • (1991) IEEE Transactions on Information Theory , vol.37 , pp. 145-151
    • Lin, J.1
  • 22
    • 1842545720 scopus 로고    scopus 로고
    • Computational methods for mixture of Dirichlet process models
    • D. Dey, P. Müller, & D. Sinha (Eds.), Practical nonparametric and semiparametric Bayesian statistics Springer Berlin
    • MacEachern, S. N. (1998). Computational methods for mixture of Dirichlet process models. In D. Dey, P. Müller, & D. Sinha (Eds.), Lecture notes in statistics : Vol. 133. Practical nonparametric and semiparametric Bayesian statistics (pp. 23-43). Berlin: Springer.
    • (1998) Lecture Notes in Statistics , vol.133 , pp. 23-43
    • MacEachern, S.N.1
  • 23
    • 0038524824 scopus 로고    scopus 로고
    • Efficient MCMC schemes for robust model extensions using encompassing Dirichlet process mixture models
    • Springer Berlin
    • MacEachern, S. N., & Müller, P. (2000). Efficient MCMC schemes for robust model extensions using encompassing Dirichlet process mixture models. In D. Rios Insua & F. Ruggeri (Eds.), Robust Bayesian analysis (pp. 295-315). Berlin: Springer.
    • (2000) Robust Bayesian Analysis , pp. 295-315
    • MacEachern, S.N.1    Müller, P.2    Rios Insua, D.3    Ruggeri, F.4
  • 27
    • 4043092820 scopus 로고    scopus 로고
    • Nonparametric Bayesian data analysis
    • 1
    • Müller, P., & Quintana, F. A. (2004). Nonparametric Bayesian data analysis. Statistical Science, 19(1), 95-111.
    • (2004) Statistical Science , vol.19 , pp. 95-111
    • Müller, P.1    Quintana, F.A.2
  • 28
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9, 249-265.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 29
    • 0032594809 scopus 로고    scopus 로고
    • Histogram clustering for unsupervised segmentation and image retrieval
    • Puzicha, J., Hofmann, T., & Buhmann, J. M. (1999). Histogram clustering for unsupervised segmentation and image retrieval. Pattern Recognition Letters, 20, 899-909.
    • (1999) Pattern Recognition Letters , vol.20 , pp. 899-909
    • Puzicha, J.1    Hofmann, T.2    Buhmann, J.M.3
  • 30
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. Annals of Statistics, 11, 416-431.
    • (1983) Annals of Statistics , vol.11 , pp. 416-431
    • Rissanen, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.