메뉴 건너뛰기




Volumn 56, Issue 8, 2013, Pages 1865-1869

Surface plasmonic effect and scattering effect of Au nanorods on the performance of polymer bulk heterojunction solar cells

Author keywords

gold nanorods; photovoltaic devices; plasmonic effect; scattering effect

Indexed keywords

CONVERSION EFFICIENCY; DETERIORATION; EFFICIENCY; ELECTRIC EXCITATION; ELECTRIC FIELDS; ELECTROMAGNETIC WAVE SCATTERING; GOLD; GOLD NANORODS; HETEROJUNCTIONS; NANORODS; OPEN CIRCUIT VOLTAGE; PHOTOVOLTAIC EFFECTS; POLYMER SOLAR CELLS; SURFACE SCATTERING; WATER RESOURCES;

EID: 84881372757     PISSN: 16747321     EISSN: 18691900     Source Type: Journal    
DOI: 10.1007/s11431-013-5263-9     Document Type: Article
Times cited : (7)

References (36)
  • 1
    • 60449088983 scopus 로고    scopus 로고
    • A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration
    • 10.1016/j.solmat.2008.12.001
    • Krebs F C, Jørgensen M, Norrman K, et al. A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration. Sol Energy Mater Sol Cells, 2009, 93: 422-441
    • (2009) Sol Energy Mater Sol Cells , vol.93 , pp. 422-441
    • Krebs, F.C.1    Jørgensen, M.2    Norrman, K.3
  • 2
    • 33846508784 scopus 로고    scopus 로고
    • A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally
    • 10.1007/s11431-006-2031-0
    • Liu Y, Shen H, Deng Y J. A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally. Sci China Tech Sci, 2006, 49(6): 663-673
    • (2006) Sci China Tech Sci , vol.49 , Issue.6 , pp. 663-673
    • Liu, Y.1    Shen, H.2    Deng, Y.J.3
  • 3
    • 84874611797 scopus 로고    scopus 로고
    • A polymer tandem solar cell with 10.6% power conversion efficiency
    • 10.1038/ncomms2411
    • You J B, Dou L T, Yoshimura K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Comm, 2013, 4: 1446-1455.
    • (2013) Nat Comm , vol.4 , pp. 1446-1455
    • You, J.B.1    Dou, L.T.2    Yoshimura, K.3
  • 4
    • 77955421032 scopus 로고    scopus 로고
    • Plasmonics for photovoltaic applications
    • 10.1016/j.solmat.2010.02.046
    • Pillai S, Green M A. Plasmonics for photovoltaic applications. Sol Energ Mat Sol C, 2010, 94: 1481-1486
    • (2010) Sol Energ Mat Sol C , vol.94 , pp. 1481-1486
    • Pillai, S.1    Green, M.A.2
  • 5
    • 33749158742 scopus 로고    scopus 로고
    • Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model
    • 10.1103/PhysRevB.72.075405
    • Dionne J A, Sweatlock L A, Atwater H A. Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B, 2005, 72: 075405-075415.
    • (2005) Phys Rev B , vol.72 , pp. 075405-075415
    • Dionne, J.A.1    Sweatlock, L.A.2    Atwater, H.A.3
  • 6
    • 56249092760 scopus 로고    scopus 로고
    • Design principles for particle plasmon enhanced solar cells
    • 10.1063/1.3021072
    • Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett, 2008, 93: 191113-191115
    • (2008) Appl Phys Lett , vol.93 , pp. 191113-191115
    • Catchpole, K.R.1    Polman, A.2
  • 7
    • 0030263086 scopus 로고    scopus 로고
    • Absorption enhancement in silicon-on-insulator waveguides using metal island films
    • 10.1063/1.117513
    • Stuart H R, Hall D G. Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl Phys Lett, 1996, 69: 2327-2319
    • (1996) Appl Phys Lett , vol.69 , pp. 2327-2319
    • Stuart, H.R.1    Hall, D.G.2
  • 8
    • 67649519719 scopus 로고    scopus 로고
    • Tunable light trapping for solar cells using localized surface plasmon
    • 10.1063/1.3140609
    • Beck F J, Polman A, Catchpole K R. Tunable light trapping for solar cells using localized surface plasmon. J Appl Phys, 2009, 105(11): 114310-114317
    • (2009) J Appl Phys , vol.105 , Issue.11 , pp. 114310-114317
    • Beck, F.J.1    Polman, A.2    Catchpole, K.R.3
  • 9
    • 80052051751 scopus 로고    scopus 로고
    • Plasmonic polymer tandem solar cell
    • 10.1021/nn202144b
    • Yang J, You J B, Chen C C, et al. Plasmonic polymer tandem solar cell. ACS Nano, 2011, 5: 6210-6217
    • (2011) ACS Nano , vol.5 , pp. 6210-6217
    • Yang, J.1    You, J.B.2    Chen, C.C.3
  • 10
    • 80054889776 scopus 로고    scopus 로고
    • Plasmonic enhancement of Raman scattering from the organic solar cell material P3HT/PCBM by triangular silver nanoprisms
    • 10.1021/jp206853u
    • Stavytska B M, Salvador M, Kulkarni A, et al. Plasmonic enhancement of Raman scattering from the organic solar cell material P3HT/PCBM by triangular silver nanoprisms. J Phys Chem C, 2011, 115: 20788-20794
    • (2011) J Phys Chem C , vol.115 , pp. 20788-20794
    • Stavytska, B.M.1    Salvador, M.2    Kulkarni, A.3
  • 11
    • 78149361242 scopus 로고    scopus 로고
    • Localized surface plasmon resonance enhanced organic soalr cell with gold nanospheres
    • 10.1016/j.apenergy.2010.09.021
    • Qiao L F, Wang D, Zuo L J, et al. Localized surface plasmon resonance enhanced organic soalr cell with gold nanospheres. Appl Energ, 2011, 88: 848-852.
    • (2011) Appl Energ , vol.88 , pp. 848-852
    • Qiao, L.F.1    Wang, D.2    Zuo, L.J.3
  • 12
    • 83455200075 scopus 로고    scopus 로고
    • High-performance organic optoelectronic devices enhanced by surface plasmon resonance
    • 10.1002/adma.201103753
    • Heo M, Cho H, Jung J W, et al. High-performance organic optoelectronic devices enhanced by surface plasmon resonance. Adv Mater, 2011, 23: 5689-5693
    • (2011) Adv Mater , vol.23 , pp. 5689-5693
    • Heo, M.1    Cho, H.2    Jung, J.W.3
  • 13
    • 84858952248 scopus 로고    scopus 로고
    • Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters
    • 10.1002/aenm.201100347
    • Wang D H, Park K H, Seo J H, et al. Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters. Adv Energ Mater, 2011, 5: 766-770
    • (2011) Adv Energ Mater , vol.5 , pp. 766-770
    • Wang, D.H.1    Park, K.H.2    Seo, J.H.3
  • 14
    • 80055010854 scopus 로고    scopus 로고
    • Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers
    • 10.1063/1.3650707
    • Xie F X, Choy C H W, Wang C D C, et al. Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers. Appl Phys Lett, 2011, 99: 153304-153306
    • (2011) Appl Phys Lett , vol.99 , pp. 153304-153306
    • Xie, F.X.1    Choy, C.H.W.2    Wang, C.D.C.3
  • 15
    • 79951869007 scopus 로고    scopus 로고
    • Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells
    • 10.1021/nn102295p
    • Wu J L, Chen F C, Hsiao Y S, et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano, 2011, 5(2): 959-967
    • (2011) ACS Nano , vol.5 , Issue.2 , pp. 959-967
    • Wu, J.L.1    Chen, F.C.2    Hsiao, Y.S.3
  • 16
    • 79958058978 scopus 로고    scopus 로고
    • Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles
    • 10.1002/anie.201101021
    • Wang D H, Kim D Y, Choi K W, et al. Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed, 2011, 50: 5519-5523
    • (2011) Angew Chem Int Ed , vol.50 , pp. 5519-5523
    • Wang, D.H.1    Kim, D.Y.2    Choi, K.W.3
  • 17
    • 72149131749 scopus 로고    scopus 로고
    • Plasmon enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles
    • 10.1016/j.solmat.2009.08.006
    • Yoon W J, Jung K Y, Liu J W, et al. Plasmon enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Sol Energ Mater Sol C, 2010, 94: 128-132
    • (2010) Sol Energ Mater Sol C , vol.94 , pp. 128-132
    • Yoon, W.J.1    Jung, K.Y.2    Liu, J.W.3
  • 18
    • 84881367939 scopus 로고    scopus 로고
    • Plasmon enhanced polymer solar cells by spin-coating Au nanoparticles on indium-tin-oxide substrate
    • 10.1063/1.4754839
    • Gao H L, Zhang X W, Yin Z G, et al. Plasmon enhanced polymer solar cells by spin-coating Au nanoparticles on indium-tin-oxide substrate. Appl Phys Lett, 2012, 101: 133903-133906
    • (2012) Appl Phys Lett , vol.101 , pp. 133903-133906
    • Gao, H.L.1    Zhang, X.W.2    Yin, Z.G.3
  • 19
    • 33749620726 scopus 로고    scopus 로고
    • Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model
    • 10.1021/jp063879z
    • Jain P K, Eustis S, El-Sayed M A. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B, 2006, 110: 18243-18253
    • (2006) J Phys Chem B , vol.110 , pp. 18243-18253
    • Jain, P.K.1    Eustis, S.2    El-Sayed, M.A.3
  • 20
    • 56249092760 scopus 로고    scopus 로고
    • Design principles for particle plasmon enhanced solar cells
    • 10.1063/1.3021072
    • Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett, 2008, 93: 191113-191115
    • (2008) Appl Phys Lett , vol.93 , pp. 191113-191115
    • Catchpole, K.R.1    Polman, A.2
  • 21
    • 84867462327 scopus 로고    scopus 로고
    • Optically-enhanced performance of polymer solar cells with low concentration of gold nanorods in the anodic buffer layer
    • 10.1016/j.orgel.2012.09.015
    • Mahmouda A Y, Zhang J M, Mac D L, et al. Optically-enhanced performance of polymer solar cells with low concentration of gold nanorods in the anodic buffer layer. Org Electron, 2012, 13: 3102-3107.
    • (2012) Org Electron , vol.13 , pp. 3102-3107
    • Mahmouda, A.Y.1    Zhang, J.M.2    Mac, D.L.3
  • 22
    • 64949156352 scopus 로고    scopus 로고
    • Direct monitoring of gold nanorod growth
    • 10.1007/s11581-008-0223-2
    • Seo S S, Wang X H, Murray D. Direct monitoring of gold nanorod growth. Ionics, 2009, 15: 67-71
    • (2009) Ionics , vol.15 , pp. 67-71
    • Seo, S.S.1    Wang, X.H.2    Murray, D.3
  • 23
    • 23744491249 scopus 로고    scopus 로고
    • Gold nanorods: Synthesis, characterization and applications
    • 10.1016/j.ccr.2005.01.030
    • Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M, et al. Gold nanorods: Synthesis, characterization and applications. Coordin Chem Rev, 2005, 249: 1870-1901
    • (2005) Coordin Chem Rev , vol.249 , pp. 1870-1901
    • Perez-Juste, J.1    Pastoriza-Santos, I.2    Liz-Marzan, L.M.3
  • 24
    • 77952334904 scopus 로고    scopus 로고
    • The weird world of nanoscale gold
    • Cortie M B. The weird world of nanoscale gold. Gold Bull, 2005, 37: 1-2
    • (2005) Gold Bull , vol.37 , pp. 1-2
    • Cortie, M.B.1
  • 25
    • 31444436840 scopus 로고    scopus 로고
    • Therapeutic possibilities of plasmonically heated gold nanoparticles
    • 10.1016/j.tibtech.2005.12.004
    • Pissuwan D, Valenzuela S, Cortie M B. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol, 2006, 24(2): 62-67
    • (2006) Trends Biotechnol , vol.24 , Issue.2 , pp. 62-67
    • Pissuwan, D.1    Valenzuela, S.2    Cortie, M.B.3
  • 27
    • 54749145863 scopus 로고    scopus 로고
    • Light scattering from 2D arrays of monodispered Ag-nanoparticles separated by tunable nano-gaps: Spectral evolution and analytical analysis of plasmonic coupling
    • 10.1364/OE.16.015312
    • Biring S, Wang H H, Wang J K. Light scattering from 2D arrays of monodispered Ag-nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling. Opt Express, 2008, 16(20): 15312-15324
    • (2008) Opt Express , vol.16 , Issue.20 , pp. 15312-15324
    • Biring, S.1    Wang, H.H.2    Wang, J.K.3
  • 28
    • 77951854033 scopus 로고    scopus 로고
    • Enhanced diode characteristics of organic solar cells using titanium suboxide electron transport layer
    • 10.1063/1.3409116
    • Lee J H, Cho S, Roy A. Enhanced diode characteristics of organic solar cells using titanium suboxide electron transport layer. Appl Phys Lett, 2010, 96: 163303-163305
    • (2010) Appl Phys Lett , vol.96 , pp. 163303-163305
    • Lee, J.H.1    Cho, S.2    Roy, A.3
  • 29
    • 33748553685 scopus 로고    scopus 로고
    • Performance analysis of printed bulk heterojunction solar cells
    • 10.1002/adfm.200500581
    • Schilinsky P, Waldauf C, Brabec C J. Performance analysis of printed bulk heterojunction solar cells. Adv Funct Mater, 2006, 16: 1669-1672
    • (2006) Adv Funct Mater , vol.16 , pp. 1669-1672
    • Schilinsky, P.1    Waldauf, C.2    Brabec, C.J.3
  • 30
    • 62649122794 scopus 로고    scopus 로고
    • High efficiency polymer solar cells with wet deposited plasmonic gold nanodots
    • 10.1016/j.orgel.2009.01.004
    • Lee J H, Park J H, Kim J S. High efficiency polymer solar cells with wet deposited plasmonic gold nanodots. Org Electron, 2009, 10: 416-420
    • (2009) Org Electron , vol.10 , pp. 416-420
    • Lee, J.H.1    Park, J.H.2    Kim, J.S.3
  • 31
    • 13244251098 scopus 로고    scopus 로고
    • Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission
    • Lakowicz J R. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem, 205, 337: 171-194
    • Anal Biochem , vol.205 , Issue.337 , pp. 171-194
    • Lakowicz, J.R.1
  • 32
    • 36549055082 scopus 로고    scopus 로고
    • Plasmonic materials
    • 10.1002/adma.200700678
    • Murray W A, Barnes W L. Plasmonic materials. Adv Mater, 2007, 19: 3771-3782
    • (2007) Adv Mater , vol.19 , pp. 3771-3782
    • Murray, W.A.1    Barnes, W.L.2
  • 33
    • 4344659567 scopus 로고    scopus 로고
    • Strong coupling between surface plasmons and excitons in an organic semiconductor
    • 10.1103/PhysRevLett.93.036404
    • Bellessa J, Bonnand C, Plenet J C. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys Rev Lett, 2004, 93: 036404-036407
    • (2004) Phys Rev Lett , vol.93 , pp. 036404-036407
    • Bellessa, J.1    Bonnand, C.2    Plenet, J.C.3
  • 34
    • 34047149890 scopus 로고    scopus 로고
    • Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection
    • 10.1038/nmat1869
    • Lee J, Hernandez P, Lee J. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat Mater, 2007, 6: 291-295
    • (2007) Nat Mater , vol.6 , pp. 291-295
    • Lee, J.1    Hernandez, P.2    Lee, J.3
  • 35
    • 36348994786 scopus 로고    scopus 로고
    • Mechanisms of spectral profile modification in surface-enhanced fluorescence
    • 10.1021/jp076003g
    • Ru L E C, Etchegoin P G, Grand J. Mechanisms of spectral profile modification in surface-enhanced fluorescence. J Phys Chem C, 2007, 111: 16076-16079
    • (2007) J Phys Chem C , vol.111 , pp. 16076-16079
    • Ru, L.E.C.1    Etchegoin, P.G.2    Grand, J.3
  • 36
    • 41449090763 scopus 로고    scopus 로고
    • Bimolecular recombination losses in polythiophene: Fullerene solar cells
    • 10.1021/ja076568q
    • Ohkita H, Cook S, Astuti Y. Bimolecular recombination losses in polythiophene: Fullerene solar cells. J Am Chem Soc, 2008, 130: 3030-3033
    • (2008) J Am Chem Soc , vol.130 , pp. 3030-3033
    • Ohkita, H.1    Cook, S.2    Astuti, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.