메뉴 건너뛰기




Volumn , Issue , 2013, Pages 246-249

Complex settlement pattern extraction with multi-instance learning

Author keywords

[No Author keywords available]

Indexed keywords

PETROLEUM RESERVOIR EVALUATION; REMOTE SENSING;

EID: 84881324742     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/JURSE.2013.6550711     Document Type: Conference Paper
Times cited : (12)

References (17)
  • 1
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classificaion of multisource remote sensing data
    • A. Benediktsson, P. Swain, and O. Ersoy. Neural network approaches versus statistical methods in classificaion of multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 28(4):550, 1990.
    • (1990) IEEE Transactions on Geoscience and Remote Sensing , vol.28 , Issue.4 , pp. 550
    • Benediktsson, A.1    Swain, P.2    Ersoy, O.3
  • 2
    • 80052338576 scopus 로고    scopus 로고
    • Application of multiple-instance learning for hyperspectral image analysis
    • sept
    • J. Bolton and P. Gader. Application of multiple-instance learning for hyperspectral image analysis. Geoscience and Remote Sensing Letters, IEEE, 8(5):889-893, sept. 2011.
    • (2011) Geoscience and Remote Sensing Letters, IEEE , vol.8 , Issue.5 , pp. 889-893
    • Bolton, J.1    Gader, P.2
  • 3
    • 0030618061 scopus 로고    scopus 로고
    • Multisource classification of complex rural areas by statistical and neural-network approaches
    • May
    • L. Bruzzone, C. Consese, F. Masellit, and F. Roli. Multisource classification of complex rural areas by statistical and neural-network approaches. Photogrammetric Engineering & Remote Sensing, 63(5):523-533, May 1997.
    • (1997) Photogrammetric Engineering & Remote Sensing , vol.63 , Issue.5 , pp. 523-533
    • Bruzzone, L.1    Consese, C.2    Masellit, F.3    Roli, F.4
  • 4
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • PII S0004370296000343
    • T. G. Dietterich, R. H. Lathrop, T. Lozano-Perez, and A. Pharmaceutical. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 89:31-71, 1997. (Pubitemid 127412230)
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 5
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • DOI 10.1016/S1532-0464(03)00034-0
    • S. Dreiseitl and L. Ohno-Machado. Logistic regression and artificial neural network classification models: a methodology review. Journal of Biomedical Informatics, 35(5-6):352-359, 2002. (Pubitemid 36951935)
    • (2002) Journal of Biomedical Informatics , vol.35 , Issue.5-6 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 6
    • 84864741147 scopus 로고    scopus 로고
    • Image based characterization of formal and informal neighborhoods in an urban landscape. Selected topics in applied earth observations and remote sensing
    • aug
    • J. Graesser, A. Cheriyadat, R. Vatsavai, V. Chandola, J. Long, and E. Bright. Image based characterization of formal and informal neighborhoods in an urban landscape. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 5(4):1164-1176, aug. 2012.
    • (2012) IEEE Journal of , vol.5 , Issue.4 , pp. 1164-1176
    • Graesser, J.1    Cheriyadat, A.2    Vatsavai, R.3    Chandola, V.4    Long, J.5    Bright, E.6
  • 7
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • DOI 10.1109/TGRS.2004.842481
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh. Investigation of the random forest framework for classification of hyperspectral data. Geoscience and Remote Sensing, IEEE Transactions on, 43(3):492-501, Mar. 2005. (Pubitemid 40320271)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 8
    • 0031106314 scopus 로고    scopus 로고
    • Strategies and best practice for neural network image classification
    • I. Kanellopoulos and G. G. Wilkinson. Strategies and best practice for neural network image classification. International Journal of Remote Sensing, 18(4):711-725, 1997.
    • (1997) International Journal of Remote Sensing , vol.18 , Issue.4 , pp. 711-725
    • Kanellopoulos, I.1    Wilkinson, G.G.2
  • 11
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum likelihood classifiers for urban land use classification
    • J. Paola and R. Schowengerdt. A detailed comparison of backpropagation neural network and maximum likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing, 33(4):981-996, 1995.
    • (1995) IEEE Transactions on Geoscience and Remote Sensing , vol.33 , Issue.4 , pp. 981-996
    • Paola, J.1    Schowengerdt, R.2
  • 12
    • 0030618062 scopus 로고    scopus 로고
    • The effect of neural-network structure on a multispectral land-use/land-cover classification
    • May
    • J. Paola and R. Schowengerdt. The effect of neural-network structure on a multispectral land-use/land-cover classification. Photogrammetric Engineering & Remote Sensing, 63(5):535-544, May 1997.
    • (1997) Photogrammetric Engineering & Remote Sensing , vol.63 , Issue.5 , pp. 535-544
    • Paola, J.1    Schowengerdt, R.2
  • 15
    • 84857153519 scopus 로고    scopus 로고
    • High-resolution urban image classification using extended features
    • R. R. Vatsavai. High-resolution urban image classification using extended features. In ICDM Workshops, pages 869-876, 2011.
    • (2011) ICDM Workshops , pp. 869-876
    • Vatsavai, R.R.1
  • 16
    • 79960089324 scopus 로고    scopus 로고
    • Machine learning approaches for high-resolution urban land cover classification: A comparative study
    • R. R. Vatsavai, E. A. Bright, V. Chandola, B. L. Bhaduri, A. Cheriyadat, and J. Graesser. Machine learning approaches for high-resolution urban land cover classification: a comparative study. In COM.Geo, page 11, 2011.
    • (2011) COM.Geo , pp. 11
    • Vatsavai, R.R.1    Bright, E.A.2    Chandola, V.3    Bhaduri, B.L.4    Cheriyadat, A.5    Graesser, J.6
  • 17
    • 0141596676 scopus 로고    scopus 로고
    • Solving the multiple-instance problem: A lazy learning approach
    • Morgan Kaufmann
    • J. Wang. Solving the multiple-instance problem: A lazy learning approach. In In Proc. 17th International Conf. on Machine Learning, pages 1119-1125. Morgan Kaufmann, 2000.
    • (2000) Proc. 17th International Conf. on Machine Learning , pp. 1119-1125
    • Wang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.